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ABSTRACT              

The ever-increasing demands for higher computing capabilities and low energy 

consumption has necessitated the developing of micro or nano electronics and sensors. This 

results in increasing demand for faster, higher performance, more compact and low energy 

consumption devices and sensors which pushes microelectronics to their physical limit. Driven 

by size, cost, sensitivity, reliability and power consumption, the electronic and magnetic 

related devices are entering a completely new age where innovations on new materials and 

physics are being explored. Among the most promising materials, magnetoelectric multiferroic 

(MEMF) and topological insulators (TI) have attracted a great deal of interest, since they are 

promising for their unique properties and innovative applications. The coupling of electric and 

magnetic properties of MEMF and the ultrahigh surface carrier mobility of TI enlighten the 

design of devices with extremely low thermal losses and energy cost. 

However, most of the device implementations of these material systems are still in status 

of ideas and laboratory prototypes. The prospects of practical realization of devices based on 

MEMF and TI encounter several critical challenges: the low ME coupling coefficient and 

current leakage in ME sensor; fabrication large scale, low roughness and large terrace width 

of TI thin films for industry utilization; the high bulk conductivity and low sensitivity of TI 

based magnetic sensors. The present thesis will address some problems and challenges based 

on the above questions. 

In this work, several aspects regarding to achieve a high performance and low energy 

consuming devices were investigated including: systemically studied and manipulated the 

energy band structure of TI for nanosized electronics and sensors application; developed Hall 

effect sensor and AHE sensor based on magnetically doped topological insulator; explored a 
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method to increase the ME coupling coefficient of ME sensors;  There are nine chapters in this 

dissertation. Chapter 1 gives general background to readers on magnetic sensors which used 

widely in daily life. Basic physics of two kinds of important materials: topological insulators 

and MEMF composites will also be introduced. Besides that, Chapter 1 will also introduce a 

proposed switching device which integrates both two kinds of materials. The last part of 

Chapter 1 will be the motivation and objectives of work in this dissertation. Chapter 2 will 

review the experiments, techniques and equipment used for research in this dissertation 

including sample fabrication methods and testing methods. Starting from Chapter 3, 

topological insulators material fabrication and sensor application will be introduced based on 

different kind of TIs. Study on MEMF sensors will be introduced in Chapter 8. Chapter 9 is a 

summary of all the work and gives some general conclusions of this dissertation. 
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CHAPTER 1. INTRODUCTION 

In the last decade there has been a significant growth of microelectronics and magnetic 

sensors. In order to fulfill the requirements of faster, higher performance, more compact and 

lower energy consumption devices, the exploration of advanced materials with novel electronic 

properties are needed. Two kinds of material are outstanding candidates. One is 

magnetoelectric multiferroic materials because of its coupling of electric and magnetic 

properties. Another one is topological insulator which is known as a quantum material with 

ultrahigh conductivity on the surface while insulating in the bulk. In this chapter, I will not 

only introduce background of these two materials but also demonstrate the critical problem in 

their devices applications and my objectives regarding to the problem.  

1.1 Magnetic Sensors and Material Aspect Consideration 

Magnetic sensors are variegated in shapes, sizes and types according to the different 

physical nature they make use of [1]. However, they share the same feature which acts like a 

transducer that converts a magnetic field into an electrical signal. The first sensor-like device 

using magnetic field can be traced back to compass which invented by Chinese over 2000 years 

back.  Afterwards, the long and complex evolution of magnetic sensors begins to the modern 

days. People never stops exploring various kinds of magnetic sensors challenging our 

imagination and productivity. Nowadays, most common types of magnetic sensing include 

Hall effect sensor, anisotropic magnetoresistance (AMR) sensor, giant magnetoresistance 

(GMR) sensor, magneto-optical sensor, resonance magnetometers, SQUID, magnetic tunnel 

junction, magnetoelectric sensor and spin valve-based sensor.  
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The present thesis focus on magnetic sensors based on a newly discovered quantum 

material – topological insulators (TIs) and their physical principles, materials, designs and 

performance.  The following parts will introduce the background. 

1.2 Hall Effect, Quantum Hall Effect and Quantum Spin Hall Effect  

1.2.1 Hall effect  

 Hall effect is a transverse voltage generated in a conductor or semiconductor by the 

charge carrier moving in the magnetic field perpendicular to the plane. It was discovered by 

Edwin Hall in 1879 at the University of Baltimore [2]. A simple-geometry plate-like Hall 

device can be used to demonstrate Hall effect as shown in Figure1.1. A bias current I is 

supplied to the plate via two of the contacts. The other two sense contacts are placed at two 

sides perpendicular to the current contact. When a perpendicular magnetic field is applied to 

the device, charge carriers experience Lorentz force. 

𝐹 = 𝑞𝐸⃑ + 𝑞𝑣 × 𝐵⃑  

q is the point charge, 𝐸⃑  is electric field, v is driven velocity, 𝐵⃑  is magnetic field 

In the steady state condition where charges are not moving in y-axis direction because 

the magnetic force is cancelled by a y-axis electrical force due to charge built up. A voltage 

generated called Hall voltage. 

𝐸y − 𝑣x𝐵z = 0 

Apply the relations:𝑣x =
𝐼

𝑛𝑎𝑏𝑞
 and 𝐸y =

𝑉𝐻

𝑎
, we get Hall voltage (𝑉𝐻): 

𝑉𝐻 =
𝐼𝐵z

𝑛𝑏𝑞
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𝑅𝐻 =
𝐸y

𝐵z𝑗x
=

1

𝑛|𝑞|
 

Hall coefficient is defined by the above equation. To use Hall effect as a sensing technology, 

the Hall voltage can be used to carry the information of magnetic induction 𝐵⃑ . Thus, it can be 

used as a magnetic sensor. What’s more, from the measured Hall voltage, we may deduce some 

important properties of the material. In this case the Hall device is applied as a means of 

characterizing material. The sensor application of Hall effect devices became important with 

the development of semiconductor technology.  

 

 

The Hall effect also raises a question on the behavior of charged particles in a magnetic 

field. As we already know that, the Lorenz force drives the charged particles away from their 

ejection direction. If the magnetic field induced Lorenz force is large enough, the charged 

particles can move in circles called cyclotron. Take electrons with charge 𝑒 and mass m for 

example,  

 

Figure 1.1 Simple plate model to demonstrate Hall effect.  
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𝐹 = 𝑚
𝑑𝑣 

𝑑𝑡
= −𝑒𝑣 × 𝐵⃑  

When magnetic field points in the z direction, 𝐵⃑  = (0, 0, B), assume the particle only moves in 

the transverse plane, so 𝑣  = (vx, vy, 0) = (𝑥̇, 𝑦̇, 0), solve the above two coupled differential 

equations,  

𝑚𝑥̈ = −𝑒𝑦̇𝐵 and 𝑚𝑦̈ = 𝑒𝑥̇𝐵 

we can get the general solution is 

𝑥(𝑡) = 𝑋 − 𝑅𝑠𝑖𝑛(𝜔𝐵𝑡 + 𝜑) and 𝑦(𝑡) = 𝑌 + 𝑅𝑐𝑜𝑠(𝜔𝐵𝑡 + 𝜑) 

This indicates the particle moves in an anti-clockwise direction when going through the –z axis 

direction with center at (X, Y), the radius R and phase 𝜑  are all arbitrary. But circling 

frequency is fixed at 𝜔𝐵 = 
𝑒𝐵

𝑚
, the cyclotron frequency. We further consider the electric field 

𝐸⃑  which accelerates the charges and the resistance term which shows the charge cannot 

accelerate forever. The equation of a charged particle in magnetic field can be modified into 

𝑚
𝑑𝑣 

𝑑𝑡
= −𝑒𝑣 × 𝐵⃑ − 𝑒𝐸⃑ −

𝑚𝑣 

𝜏
 

in which 
𝑚𝑣

𝜏
 is the friction term that can represent electron scattered by impurities. This 

equation is the simplest model of charge transport called the Drude model. It assumes that 

electrons in solids is pinballs that bounding between the environment (ions) and the boundary. 

And there is no interaction between electron-electron and electron-lattice. The solution of the 

above equation at 
𝑑𝑣

𝑑𝑡
= 0, 

𝑒𝑣 × 𝐵⃑ +
𝑚𝑣 

𝜏
= −𝑒𝐸⃑  

The current density 𝐽 = −𝑛𝑒𝑣 , where 𝑛 is the density of charge carriers. The above equation 

becomes 
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(
1 𝜔𝐵𝜏

−𝜔𝐵𝜏 1
) (

𝐽𝑥
𝐽𝑦

) =
𝑒2𝑛𝜏

𝑚
(
𝐸𝑥

𝐸𝑦
) 

As we know J = σE. In the presence of a magnetic field σ becomes a matrix as conductivity 

tensor.  

𝜎 = (
𝜎𝑥𝑥 𝜎𝑥𝑦

−𝜎𝑥𝑦 𝜎𝑥𝑥
) 

Then we get the explicit expression for conductivity, 

𝜎 = 𝜎0

1

1 + (𝜔𝐵𝜏)2
(

1 −𝜔𝐵𝜏
𝑤𝐵𝜏 1

) 

in which, 𝜎0 =
𝑒2𝑛𝜏

𝑚
 is the conductivity without a magnetic field. The resistivity is the inverse 

of the conductivity from its definition. Therefore, regarding to the conductivity matrices, the 

resistivity matrices are, 

𝜌 = 𝜎−1 = (
𝜌𝑥𝑥 𝜌𝑥𝑦

−𝜌𝑥𝑦 𝜌𝑥𝑥
) 

From the above Drude model, we get  

𝜌 =
1

𝜎0
(

1 𝜔𝐵𝜏
−𝜔𝐵𝜏 1

) 

The diagonal terms are from longitudinal resistivity 𝜌𝑥𝑥 =
1

𝜎0
=

𝑚

𝑒2𝑛𝜏
 The off-diagonal terms in 

the matrix stems from Hall effect 𝜌𝑥𝑦 =
𝑤𝐵𝜏

𝜎0
=

𝐵

𝑛𝑒
. During the experiment, we measure the 

longitudinal resistance Longitudinal resistance  R𝑥𝑥 = 𝑉𝑥 𝐼⁄  and Transverse resistance  R𝑥𝑦 =

𝑉𝑦 𝐼⁄ . Then we can get 𝜌𝑥𝑥, 𝜌𝑥𝑦, 𝑛, 𝜏. We will use these equations to derive the carrier mobility 

and conductivity in our results of topological insulators based Hall sensors in the following 

chapters.  
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1.2.2 Integer quantum Hall effect  

The Hall effect has been found widespread application in magnetic field sensors and 

has led to a wealth of new phenomena, such as the integer quantum Hall effect [3]. The integer 

quantized Hall effect also discovered 100 years later in 1980 at low temperatures and strong 

magnetic fields [4]. The history of the quantum Hall effect is intimately related to technological 

advances in the fabrication of the metal-oxide-semiconductor (MOS) structure. At that time, 

researchers began to explore the electron properties which can enhance the performance of 

MOS devices. The motion of electrons in the thin layer of silicon and silicon oxide interface is 

expected to be confined into two dimension. To increase the carrier mobility, researchers were 

seeking for the answer about which scattering process during the charge transport dominate 

the motion.  

As postulated by Schrieffer in 1957, if the wavelength of the charge carrier is 

comparable to the distance from interface to the classical turning point, they cannot behave 

classically in the direction perpendicular to the interface. However, because of the scattering 

process of carriers with impurities, the quantized behavior of carrier is expected but not observe 

until researcher’s decrease experiment temperature to liquid helium and applied a strong 

magnetic field (19.8T). A review article published by T. Ando, A. Fowler and F. Stern in 1982 

[5] summarizes the discovery process of QHE. Von Klitzing was awarded the 1985 Nobel 

prize for discovering integer quantum Hall effect. As shown in the original experimental curve 

of QHE in Figure 1.2, the Hall resistance appears plateaus together with vanishing longitudinal 

resistance is observed. This is because the localized electrons and appearance of Landau level. 

The Hall resistance is the integer multiples of ℎ/𝑒2 when Fermi level is in between Landau 
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levels. Similar to the problem of “particle in a box”, electrons are confined in a thin layer of 

few nanomaters plan so the energies are quantized: 

E0,𝑁 = E0 + (𝑁 +
1

2
)ℏ𝜔𝐵   (𝑁 = 0,1,2… ) 

where ℏ𝜔𝐵 = ℏ𝑒𝐵/𝑚 is the cyclotron energy..  

 

 
Figure 1.2 The discovery of quantum Hall effect in a silicon MOSFET at liquid helium 

temperature [6]. The quantized plateau on Hall resistance and vanish of longitudinal 

resistance were observed. 

 

Ando in his review paper on topological insulator materials [7] descriped that the 

quantum Hall systems can be considered to be the first topological insulator because the 

Landau quantization causing the energy gap and Fermi level are located in the gap, which is a 

situation akin to an insulator. 
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1.2.3 Quantum spin Hall effect  

 The research on quantum spin Hall effect(QSHE)  is motivated both by the quest for 

spin based electronic devices and by its scientific impact in condense matter physics. It is 

proposed that quantum spintronic devices process information and storage memories with 

lower power consumption compared to the logic devices based on charge current [8]. Quantum 

spin Hall effect is the quantized version of spin Hall effect which theoretically proposed in 

1970s. In analogy to Hall effect, a transverse spin current in response to longitudinal electric 

field for spin Hall effect. The first evidence for the spin Hall effect is observation of spin-up 

and spin-down electrons are deflected to opposite side of a semiconductor which resulting the 

spin current with no net charge current, perpendicular to the direction of the electric field in 

the absence of applied magnetic fields by Kato et al. in 2004 [3]. This experiment evidence of 

spin Hall effect boosts the research on manipulating electrons spins in non-magnetic 

semiconductors.  

Similar to QHE happens in confined electrons in two dimensions, researchers soon 

predicted that when spin-polarized electrons flow opposite directions using the edge state, 

quantized spin Hall effect can be observed. Kane and Mele provided a theoretical model system 

composed of a graphene model with spin-orbital coupling (SOC) to achieve the QSHE [9].  

However, the SOC in graphene is very weak so it is difficult to obtain experimental evidence 

of QSHE in graphene. Though QSHE in graphene systems is not observed, it was soon 

predicted that it could be achieved by 2D quantum well structure by Bernevig, Hughes, and 

Zhang (BHZ) [10]. This theoretical breakthrough finally leads to the experimental observation 

of QSHE and the birth of topological insulators.  
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In 2007, Konig et al observed the quantization of magneto-conductivity in zero 

magnetic field in CdTe/HgTe/CdTe quantum well [11]. This was defined as 2D topological 

insulator. Soon after the discovery, theorists extended the concept of topological insulators into 

3D systems.  

1.3 Topological Insulators 

1.3.1 Band theory, topology of solids and symmetries  

When “topological insulator” appears on the paper, our first impression is we know 

insulator since we were in our science class. “Topology” is a Greek word define the properties 

of space that are preserved under continuous deformation. For example, a mug with a handle 

on the side can be continuously deformed into a doughnut in principle without tearing and 

gluing because both have one hole.  However, a basketball cannot transfer into a doughnut 

without cutting it because the ball shape has no hole. In this sense, the doughnut and mug have 

the same topology whereas the ball has a different topology from them.  

In order to explain the concept of topological insulator, some knowledge in quantum 

physics need to introduce first. In quantum mechanical, if a system is confined spatially, they 

could only have certain discrete value of energy. These values are defined as energy levels. 

The lowest possible energy level of a system can stay is called ground state. If in some 

circumstance, such as heating the system, it goes to higher energy level, we said the system is 

excited. It is on excited state. How could we know how many energy states and their value in 

a system? This can be achieved by using Schrodinger equation with a Hamiltonian operator on 

a wave function as an eigenfunction. The eigenvalues are the energy level values. The 

Hamiltonian is the total energy of a system including kinetic energy and potential energy. For 
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any system contain electrons in atoms, ions or molecules, we can calculate the energy levels, 

which are the possible state the electron can stay or occupied. However, this does not mean, 

the electron occupies all the energy states. Besides, there is also a possibility that an energy 

range in a solid where no electron energy state can exist, energy gap. Therefore, the “insulator” 

in terms of the band theory are all gapped systems, where the Hamiltonian 𝐻⃑⃑  displays an 

energy gap between the ground state and the first excited state. For example, in diamond crystal, 

the electrons fully occupy energy states and the next available energy state is far away. The 

energy gap prevents the electron jump to the higher state without external excitation at room 

temperature. Therefore, diamond is an insulator which has a gaped Hamiltonian.  

Another important concept in condense matter physics is symmetry. It is defined as the 

system is not change to any of the transformations such as reflection, rotation or scaling. Each 

of this transformation correlates to a symmetry operation. In group theory, there are unitary 

symmetries and antiunitary symmetries. For the former one, the symmetry operation commutes 

with the Hamiltonian so that the Hamiltonian can be block-diagonalized into irreducible unit. 

One can just study the Hamiltonian within the unit. These symmetries include translation, 

rotation and scaling. However, systems with antiunitary symmetries cannot be block 

diagonalization into small units. These includes time-reversal symmetry, particle hole 

symmetry and chiral symmetry.   

When a set of symmetries is specified, different Hamiltonians 𝐻’⃑⃑  ⃑ are grouped under the 

same equivalence class to which 𝐻⃑⃑  may be deformed without closing of energy gap and no 

violations of the specified symmetries. The ordinary insulators of which the Hamiltonian can 

deformed continuously to each other without closing of energy gap share the same topology. 
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However, topological insulators are insulators that do not share the same topology with 

ordinary insulators [12].  

Although for topological insulators, the Hamiltonian also displays an energy gap 

between the occupied and empty energy states but it is fundamentally modified due to the spin-

orbit interaction. That is, the interaction between electrons’ spin and orbital angular momentum. 

This is a relativistic effect that happened in all chemical atoms. But in material compose heavy 

elements auch as Bi or Sb, the spin-orbital interaction is stronger and crucial. The interaction 

is so strong that the energy gap is inverted, the states should have higher energy appears below 

the gap. This twist in the order of electronic states, like the twist in the Mobius strips, 

comparing to the ordinary insulator band gap like a close stripe (Figure 1.3).  

 
Figure 1.3 Band structure of toplogical insulators and other insulators [13].  

 

The topology of this two gaped system is distinct. Also, as introduced above the energy 

states are discrete in gaped systems, as long as the energy gap remains open, the topology 

cannot change [13]. Thinking about a situation that a topological insulator physically contact 
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to an ordinary insulator like vacuum or air. In order to change topology across the interface 

between a topological insulator and an ordinary insulator, the energy gap must close and reopen 

[13]. Similar to the process of opening the Mobius strips and form a close stripe, one need to 

cut the Mobius stripe and make a half-twist to flatten then joining the ends of the strip to form 

a close loop. This gap closing at interface is where the surface state of 3D TIs and edge state 

of 2D TIs comes from (Figure 1.4).  

The principle for the occurrence of gapless interface states is called bulk-boundary 

correspondence in topological phases [4]. Most of the unique properties of TIs come from this 

peculiar surface/edge states. The most profound one is the highly metallic conducting 

surface/edges (ultrahigh electron mobility on the surfaces/edges), which don’t exist in ordinary 

insulators.   

Moreover, these metallic surfaces/edges are fundamental different from the ordinary 

conductor or other 2D conducting surfaces. The electrons on these surfaces/edges not only 

have ultrahigh mobility but also immune to non-magnetic impurities [14]. These surface/edge 

electrons cannot be backscattered during propagation because the above mentioned strong 

spin-orbital coupling. For these electrons, the momentum and spin are 90 degrees locking to 

each other.  Figure 1.4 shows the electron propagation on the edge/surface of 2D/3D TIs.  The 

spin up electrons travel in one direction while spin down in a opposite direction. If the electron 

is backscattered, they will travel to opposite direction because of spin-momentum locking, the 

spin at same time need to flip in opposite direction. However, if there is nothing like magnetic 

field or magnetic impurities to help flip the spin, the electrons cannot travel backwards [6]. 

Therefore, the surface electrons propagate with no resistance in theory.  
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Figure 1.4  Edge and surface states of topological insulators [7]. 

Topological insulators were defined in the process of searching for the Z2 topology 

insulators [14]. It was first discoved in  CdTe/HgTe/CdTe quantum well in 2007 by low 

temparture transport measurement, then in Bi1-xSbx alloy 3D system in 2008 by angle-resolved 

photoemission  spectroscopy (ARPES). In this work, we only focus on 3D topological systems. 

 To give a brief summary of topological insulators, it is a recent discovered kind of 

quantum material which possesses a ultra-high carrier mobility at surface while insulating in 

the bulk [15]. The exotic metallic surface behavior of TI is supported by the unique bulk band 

structure where the bulk conduction band and bulk valence band are inverted at a certain point. 

The band inversion is caused by SOC. The extreme strong coupling of electron’s spin and orbit 

in TI leads to the spin and momentum locking in the material and eventually leads to band 

inversion and a linear dispersion of surface states. Though TI originate from its unique bulk 

insulators, its surface state which support localized metallic states with special properties such 

as spin polarization.  

 The surface states of topological insulators are characterized by an odd number of 

linearly dispersed Dirac cones, meaning that the bands exhibit very small curvature and 

therefore the surface carriers have little effective mass. Moreover, these conducting surfaces 

states are topologically protected since the directions of spin and momentum are locked due to 
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a strong spin-orbit coupling. The strong SOC ensures that the spin state of a surface carrier can 

be determined from the direction of the wave vector alone and that there is only one state for 

each point on the surface bands. 

 
  

Due to this topological origin of the surface states, the gapless surface dispersion is 

robust and can keep its form (without the opening of a surface band gap) even in the presence 

of perturbations such as defects, impurities, and other perturbing influences in their 

environment that do not break time reversal symmetry (TRS) [14]. The topological robustness 

and the SOC act together to suppress backscattering of surface carriers, allowing for highly 

conductive surface channels. Recently, by doping copper in bismuth selenide TI, it's possible 

to make the topologically ordered electrons superconducting, dropping electrical resistance in 

the surface states to zero. Thus, the topological insulator should lead to the advancement of 

future low-power electronics.  

 

 Figure 1.5. Idealized band structure of topological insulators. 
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1.3.2 Ferromagentism in topological insulators and anomalous Hall effect 

The exotic surface state of TIs protected by TRS can be broken by certain perturbations, 

such as the application of a magnetic field out of plane of the surface or elemental doping that 

leads to magnetic ordering out of plane. As shown in Figure 1.6, the breaking of TRS in the 

system results in opening a surface energy gap at the Dirac point, separating the energy states 

of spin-up carriers from spin-down upon the surface.  

 

This phenomenon can be understood by considering a simple Hamiltonian for the 

surface states without turbulence from magnetic field as 𝐻⃑⃑ 0 = 𝑣 𝐹(kxσy – kyσx) where 𝑣 𝐹 is the 

Fermi velocity, 𝑘⃑  = (kx; ky) is the wave vector and σx and σy are Pauli matrices. The energy of 

electrons are E = ±vF k. When magnetic elements are doped in topological insulators, with 

inducing the ferromagnetic phases when placing the TIs at low temperature environment. With 

magnetization direction normal to the surface, the Hamiltonian of the system changes to 𝐻⃑⃑  

=𝐻⃑⃑ 0+JMσz/2 [16], where the magnetization is 𝑀⃑⃑ =(0, 0, M) and J the dimensionless exchange 

coefficient. To solve the eigenfunction,  energy eigenvalues of electrons are given by Ek = ±[(vF 

 

Figure 1.6 Ideal 3D topological insulator band structure and ferromagnetic topological 

insulators band structure.   
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k)2 + (JM/2)2]1/2, where k2=kx
2+ky

2, which describes surface bands separated by an energy gap 

of JM. This can be compared directly with the well-known expression for the dispersion of a 

free relativistic particle from Dirac equation, Ep = ±[(cp)2 + (mc2)2] 1/2 where c is the speed of 

light, m is the particle mass and p is the momentum. Through comparison of the two dispersion 

relations, the dispersion characteristics of surface carriers in TIs are very similar to free 

relativistic particles, with the magnetization and exchange coupling accounting for the energy 

gap instead of the particle mass. It is in this situation, with a surface energy gap, that topological 

insulators find many of their interesting properties such as the  anomalous quantum Hall effect 

(QAHE) and its quantized conductivity [17-20]. The anomalous Hall effect in a ferromagnet 

can be induced by spontaneous magnetization [21]. 

 
Figure 1.7 Schematic picture of quantum Hall effect and quantum anomalous Hall effect [22] 

 As introduced above, the discover of quantum spin Hall effect leads to the development 

of TIs. Researchers also recognized that QSHE in nonmagnetic systems is funmanetally related 

to the anomalous Hall effect in ferromagnetic systems [21]. Through suppressing  one of the 
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spin channels in the QSH system by inducing ferromagnetism, it will naturally leads to the 

QAHE [23]. Different from QHE, QAHE can happen without a external magnetic field. The 

combination of spontaneous magnetization in ferromagnetic TIs and strong spin-orbital 

coupling could take over the role of external magnetic field in QHE. QAHE was first observed 

in Cr-doped Bi2Te3 in 2013 [24] where the Hall resistance shows h/e2 as magnetic field drops 

to zero  (Figure 1.7). One can observed that Hall resistance jumps from -1ℎ/𝑒2 to 1ℎ/𝑒2 

directly when applied magnetic field and stay at 1ℎ/𝑒2 when remove the field in QAHE. This 

is different from the QHE in which Hall resistance reach to 1ℎ/𝑒2 step by step as magnetic 

field increasing.  

 
Figure 1.8 Quantum Hall trio [23]. 

 The discovery of QAHE completes the Hall effect family. Figure 1.8 shows the Hall 

effect family since the first Hall effect been discovered by Edwin Hall in 1897. The year of 

each discovery lists in the parentheses. For all three quantum Hall effect, electrons flow on the 

edges whereas the bulk of the systems keep insulating. When there is a net flow of electrons 

for Hall resistance measurements, the extra electrons only occupy the left edge channels 

regardless of spin direction in QHE,   spin with opposite directions occupy the opposite sides 
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of edges in QSHE, and only spin-down electrons flow through the left edge in QAHE [23]. 

Besides, QHE requires the external magnetic field in 2D semiconductor or conductor. QSHE 

happens in nonmagnetic thin films. QAHE happens in ferromagnetic TIs.  

 The lossless edge channel and the exact quantization of QAHE not only spur the 

research of TIs but also could be applied in many fields including spintronic devices and 

quantized resistance can be used as a resistance standard [23]. In this work, we explore the 

sensor applications of TIs for ultrahigh sensivity sensors.  

1.3.3 3D topological insulators 

  

Although Bi1-xSbx alloys were the first 3D TI material discovered by Fu and Kane [25] 

but it is not suitable for detailed study of topological surface state and the further application 

due to its complicated surface state [26, 27]. Some theoretical prediction and first-principle 

calculations [28, 29] of Bi1-xSbx surface are not consistent with the experimental results. The 

understanding is still in an incomplete state for this system [7]. Therefore, Zhang et al. 

theoretically predicted that Bi2Se3, Bi2Te3 and Sb2Te3 should be 3D TIs using a low-energy 

effective model. Soon after the prediction, the experimental observation of surface states of 

Bi2Se3 [30], Bi2Te3 [31] and Sb2Te3 [32] were reported.  These materials are all tetradymite 

structure which can be defined as five layer of atoms stacked in X-Y-X-Y-X form in covalence 

bond [7]. These five atomic layers form one quintuple layer which is about 1nm thick. The 

interaction between quintuple layers is via van der Waals force. This provides a change to 

deposite TI thin films on any substrates by van der Waals epitaxy which requires less on lattice 

matching. This will be discussed in next chapter. Crystal structure of 3D TI systems and 

quintuple layer are shown in Figure 1.9.  
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Figure 1.9 Crystal structure and quintuple layer [33]. 

 

1.4 Topological Insulator Based Devices 

1.4.1 Proposed devices based on topological insulator 

 The exotic surface state of TIs can be broken by certain perturbations, such as the 

application of a magnetic field out of plane or elemental doping that leads to magnetic ordering 

out of plane. This finally leads to anumolous Hall effect as introduced above. The surface band 

gap turning from close to open provide an opportunity to make a switching device that can be 

used in modern electronics and spintronics.  

 We proposed a high resistance on/off ratio, smaller size and less power consumption 

switches based on TIs. Figure1.10 (a) shows the central idea of the proposal: The Ron/off ratio 

of the current switch devices is controlled by manipulating the surface band gap of topological 

insulator through magnetization direction of the magnetoelectric oxide layer. And the 

magnetization (𝑀⃑⃑ ) direction in the magnetoelectric oxide can be controlled via an electric field 

applied through the metal gate. Orientating 𝑀⃑⃑  perpendicular to the TI surface leads to high 
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resistance state, whereas the low resistance state is restored when 𝑀⃑⃑  is parallel with the TI 

surface. Moreover, as Figure 1.10 (b) shows, the energy consuming of topological insulator 

based current switch devices (TI), which is proportional to their electric resistivity, is far below 

other high magentoresistance devices based on magnetic tunneling junction (MTJ), 

ferromagnetic Mott insulators (FFET), and giant magnetoresistance (GMR).  

 

The TI-based switching functioning based on the proximity effect of TI and 

ferromagnets as shown in Figure 1.11(a). The device consists of a gate metal layer, 

magnetoelectric oxide (EM oxide) layers, a thin topological insulator layer and a magnetic 

doped topological insulator buffer layer on mica substrate. The magnetic doped topological 

insulator buffer layer can break time-reversal symmetry of the bottom surface while keeping 

 

Figure 1.10  (a) Proposed current switch devices. Orientating 𝑀⃑⃑  perpendicular to the TI 

surface leads to high resistance state, whereas the low resistance state is restored when 

M is parallel with the TI surface. (b) Comparison on Ron/off ratio and electricresistivity 

between TI-based current switch devices and other high magnetoresistance materials. 
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the top surface active. The net magnetization (𝑀⃑⃑ ) will generate in ferromagnetic thin layer in 

the magnetoelectric oxide (for example, magnetoelectric multiferroic CoFe2O4/BaTiO3 

heterostructure). Its direction with respect to z axis (Ɵ) can be manipulated via the ferroelectric 

thin layer in ME oxide through the metal gate. Figure1.11 (c) shows the magnetization 

direction change from (Ɵ=0 ̊ to 90 ̊ ) as  the gate voltage increase/decrease . As Figure 1.11(b) 

shows, orientating 𝑀⃑⃑  perpendicular to the TI surface (Ɵ=90 ̊ ) leads to a bandgap, whereas the 

bandgap vanishes when 𝑀⃑⃑  is parallel to the TI surface(Ɵ=0 ̊ ).  Therefore the current switch 

device can be operated when the magnetization direction is varied by the external electrical 

field. These two states will enable the device to change from insulator to conductor reversiably 

when exposed to a small gate voltage. The band diagram of the two states of switch are describe 

in Figure 1.11(d). One can see that when the gate voltage increase to certain threshold, the 

current through source to drain will jump because of the surface bandgap and its relative 

position to Fermi level. By further exploring the tunneling behavior in scaled devices with 

intermediate channel lengths, it is expected to substantially increase the Ron/off ratios in which 

the device enters a critical regime between diffusive (low bias) and ballistic (high bias) transort 

— A significant change in the channel mobility is expected to result in high Ron/off ratios, which 

is a highly sought-after feature for low-power electronics.  
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The device proposed above requires several combination of several layers of material 

including not only TIs but also magnetoelectric multiferroics. We will introduce the concept 

of magnetoelectric multiferroics below.  

 The coupling of electric and magnetic phenomena is not a novel idea since James Clerk 

Maxwell already established the dynamic coupling between these two in his electromagnetic 

equations. Electromagnetism originated from the electrodynamics, namely, time-dependent 

magnetic field and electric field are coupled, whereas the electrostatic field and magnetostatic 

field are independent of each other. However, magnetoelectric (ME) effect exits even in static 

 

Figure 1.11 A proposed current switch device based on the manipulation of surface states. 

The magnetization direction of ferromagnetic oxide can be adjusted via an electrical field 

applied on the metal gate (b). When θ is 90o, surface gap is open, resulting in massive 

Fermions with low mobility (a); however, when θ is 0o, surface remains gapless, leading 

to massless Fermions with high mobility (c). By controlling the magnetization directions, 

the switch could be operated with Ron/off states (d). 
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field that static electric field induces magnetization and a static magnetic field gives rise to 

electric polarization. This property promises the ME device to consume less energy since the 

thermal loss associating the electron motion in the AC field can be reduced [34]. 

The present section begins with an introduction to the physics of magnetoelectric 

coupling, followed by the material consideration of magnetoelectric multiferroics and the 

origin of magnetoelectric composites.  

1.4.1 Background of magnetoelectric and multiferroic 

The idea of ME can traced back to Pierrer Curie in 19th century who was the first to state 

that molecules are magnetized by applying an electric field and electrized by a magnetic field 

[35]. The coupling between the ferromagnetic order and ferroelectric order in a single phase 

has been described by many researchers [36-38]. As introduced above, the coupling can be 

described by Landau theory by writing the free energy G of the system in terms of magnetic 

field (𝐻⃑⃑ ) and electric field (𝐸⃑ ). When we consider the temperature induced ferroic phase 

transition in the couple the system, the spontaneous polarization ( 𝑃⃑ 𝑠 ) and spontaneous 

magnetization (𝑀⃑⃑ 𝑠) will also be accounted in the free energy formula. Therefore, the applying 

the Einstein summation, the tensor notation of the free energy can be expressed as follows [36] 

−𝐺(𝐸⃑ , 𝐻⃑⃑ ) =
1

2
𝜀0𝜀𝑖𝑗𝐸𝑖𝐸𝑗 +

1

2
𝜇0𝜇𝑖𝑗𝐻𝑖𝐻𝑗 + 𝛼𝑖𝑗𝐸𝑖𝐻𝑗 +

𝛽𝑖𝑗𝑘

2
𝐸𝑖𝐻𝑗𝐻𝑘 + ⋯ 

The first term on the right hand side of the equation describes the contribution of electrical 

response to an electric field, where 𝜀0 and εij are permeability in free space and in the material 

respectively. The second term is the magnetic response of a magnetic field which is equivalent 

to the first term. The third term described the linear coupling of magnetic ordering and electric 

ordering. 𝛼ijis the linear coupling coefficient and 𝛽ijk is the higher-order coupling coefficient. 
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The coupling effect of ferromagnetic and ferroelectric can be established in the form of 𝑃𝑖(𝐻𝑗) 

and 𝑀𝑖(𝐸𝑗) by differentiating free energy with respect to 𝐸⃑  and 𝐻⃑⃑  respectively. We can obtain： 

−𝑃𝑖 =
1

2
𝜀0𝜀𝑖𝑗𝐸𝑗 + 𝛼𝑖𝑗𝐻𝑗 +

𝛽𝑖𝑗𝑘

2
𝐻𝑗𝐻𝑘 + ⋯ 

Set 𝐸𝑗 = 0, we get:  

−𝑃𝑖 = 𝛼𝑖𝑗𝐻𝑗 +
𝛽𝑖𝑗𝑘

2
𝐻𝑗𝐻𝑘 + ⋯ 

Similarly, differentiating free energy with respect to H and set 𝐻𝑗 = 0, we obtain: 

−𝑀𝑖 = 𝛼𝑗𝑖𝐸𝑗 +
𝛽𝑗𝑖𝑘

2
𝐸𝑗𝐸𝑘 + ⋯ 

According the equation above, the coupling coefficient becomes a critical value to 

describe whether it is a strong coupling or a weak coupling between the magnetic property and 

electric property [39]. The linear magnetoelectric effect in their book and proposed the model 

as followings: 

𝑃𝑖 =
𝜕𝐸𝑖

𝜕𝐻𝑗
𝐻𝑗 

𝑀𝑖 =
𝜕𝐻𝑗

𝜕𝐸𝑖
𝐸j 

𝜕𝐸𝑖

𝜕𝐻𝑗
 is the inverse ME effect coefficient.  

After spontaneous magnetization and polarization simultaneous happened in a single 

phase compound discovered in nickel iodine boracites (Ni3B2O13I) [40], lots of other bulk 

ceramic multiferroic materials have been explored. These bulk single phase multiferroic 

materials including Bi(Fe,Mn)O3 [41-43], ReMnO3 and the series of ReMn2O5 single crystals 

(Re = rare earth). BiFeO3 is discovered which perhaps the only material that is both magnetic 

and a strong ferroelectric at room temperature [44]. It exhibits an antiferromagnetic behavior 
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with a relatively high Neel temperature at about 380 °C and a ferroelectric behavior with high 

Curie temperature (𝑇𝑐  = 810°C). Its weak ferromagnetism at room temperature is due to a 

residual moment from spin structure [45]. The existence of a spin cycloid averages out any 

linear magnetoelectric (ME) coupling between polarization and magnetization. However, the 

compound which has the ME properties are very few in nature  because in general, the 

transition metal d electrons, which are essential for magnetism, reduce the tendency for off-

center ferroelectric distortion. Consequently, an additional electronic or structural driving force 

must be present for ferromagnetism and ferroelectricity to occur simultaneously. The linear 

interaction can only exist under very restrictive crystal symmetry constraints, thus the number 

of crystals that are able to show it are rather limited. Also, their weak ME effect still hinder the 

application.  

An alternative method in enhancement of ME effect is to introduce indirect coupling 

through strain between two materials such as ferroelectric material and ferromagnetic material 

[46]. This is a biquadratic coupling between polarization and magnetization placing no 

constraints on crystal symmetry and is thus allowed in all materials. This coupling is so far the 

most commonly exploited, and has the largest potential to commercially viable [47]. The 

biquadratic magnetoelectricity can be achieved and manipulated by strain as the intermediate 

step.  
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Figure 1.12 Magnetoelectric multiferroic composite design [48]. 

 

The ferroelectric/ferromagnetic composites enable the development of magnetoelectric 

materials with enhanced ME effect. This can be achieved by indirect coupling through the 

interfacial strain between the ferroelectric and ferromagnetic materials [46, 49-51] shown in 

Figure 1.12. Such strain mediated ME effect can be used to generate electric polarization in 

the ferroelectric component of the composite due to applied magnetic field in the ferromagnetic 

component or magnetization in the ferromagnetic component due to applied electric field in 

the ferromagnetic component. The property tensor 
𝜕𝐸𝑖

𝜕𝐻𝑗
 can be given by the product of the 

proportionality tensor of the phases [52]: 

𝛼𝑖𝑗 =
𝜕𝜆𝑖𝑗

𝜕𝐻𝑗

𝜕𝐸𝑖

𝜕𝜆𝑖𝑗
 

where 
𝜕𝜆𝑖𝑗

𝜕𝐻𝑗
 is the magnetostriction derivative and 

𝜕𝐸𝑖

𝜕𝜆𝑖𝑗
 is the change of the electric field with 

strain. Therefore, according to the equation above, for the engineering of materials with the 

desired properties, two types of composites can be proposed, those with product properties of 
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inverse magnetostrictive effect-electrostrictive phases and those with product properties of 

magetostrictive-pizoeletricity. For example, the ME effect, when a magnetic field is applied to 

a composite, the magnetic phase changes its shape magnetostrictively. The strain is then passed 

along to the piezoelectric phase, resulting in an electric polarization. Thus, the ME effect in 

composites is extrinsic, depending on the composite microstructure and coupling interaction 

across magnetic-piezoelectric interfaces [53].  

1.5 Motivation and Objectives 

 Though TI has very unique properties as introduced above, there are still several critical 

challenges need to be addressed in order to utilize TI practically such as building electronic 

devices and magnetic sensors.  

First challenge is to choosing proper syntheses method to fabricate TI materials with 

high quality: large area of thin films, low surface roughness, large terrace width, thickness 

controllable TIs. There are several ways of syntheses: bulk single crystals growth by Bridgman 

method or vapor transport; nanoribbons and nanoplates fabrication by gold-catalyzed vapor 

liquid solid (VLS) technique; and thin film growth by molecular beam epitaxy (MBE) or 

chemical vapor deposition (CVD). Though the single crystal of TIs is easy to grow, it is not 

easy to get large pieces when you cleave them. Usually the nano flakes can be made by 

exfoliation using Scoth tapes. Thin film deposition is the method I choose for my TI samples. 

Compared to single crystal growth, deposition method can give more controllability regarding 

to both the composition and thickness of samples. Also, with epitaxy growth, there are more 

flexibility to sysnthese more complex TI systems such doping or co-doping different elements. 

Besides, since the van der Waals gap between the quintuple layers, the lattice matching of 
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sample with substrate is not crucial in epitaxy which gives the possibility to deposite TIs on 

different kind of substrates to fullfill the need of different measurement requirements.   

 Second, most TI systems discovered nowadays are semiconductors in the bulk rather 

than insulators. The Fermi level lines at bulk conduction band or bulk valence band. Also, the 

Dirac cone is not within the bulk band gap for most TIs [Fig 13 (b)]. It is often difficult to 

obtain sufficiently bulk-insulating samples because of the unintentionally-doped Se or Te 

vacancies. Therefore, reducing bulk conductivity is crucial to achieve ultrahigh carrier mobility 

of surface state. 

 

Figure 1.13 Schematic picture of surface state and Dirac cone in Bi2Se3 (a) and Bi2Te3 (b); 

and their relative constant-energy contours of Dirac cones(c) Bi2Se3 and (d) Bi2Te3 [7] 

 

 Third, magnetic doping of TI may introducing ferromagnetism in TIs, largely 

increasing its response and sensitivity to external magnetic field. At the same time, 

ferromagnetism destroies the surface state, opening a small energy band gap on surface state, 
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inducing an interesting phenomena, quantum anomalous Hall effect. Therefore, extensive 

understanding of magnetically doped TIs is still required.  

Last but not least, in order to make sensors and switch devices as we proposed we need 

to investigate magnetoelectric multiferroics to integrated ME and TI in the same device. There 

is therefore a requirement to develop magnetoelectric materials with low leakage current and 

high ME coupling coefficient.  

 Based on the problems and challenges above, I will approach the TI based magnetic 

sensors and devices in the following three aspects:  

First, grow large pieces with low surface roughness and large terrace width and 

thickness controllable epitaxial TI thin films by MBE. Second, optimize a TI system aiming at 

reducing the bulk conductivity and increasing surface carrier mobility by changing systematic 

with different elements. Third, explore the magnetic doped TI about its response to a magnetic 

field and improve the sensitivity of the response. Fourth, utilize Hall effect (HE) and 

anomalous Hall effect (AHE) to design high sensitivity magnetic sensor using magnetic doped 

TI. Last, for integrating switch device, study magnetoelectric multiferroics by using high 

magnetostriction sensitivity material with doping element to increase magnetostriction 

derivative term in the coupling coefficient   
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CHAPTER 2. SAMPLE SYNTHESIS AND MAJOR EXPERIMENTAL 

TECHNIQUES 

Different techniques of sensor fabrication, characterization and testing have been 

applied in this work according to different sensor applications. For thin film sensors based on 

topological insulators, molecular beam epitaxy (MBE) method were used for thin film 

deposition. Characterization methods such as reflective high energy emission diffraction 

(RHEED), atomic force microscopy (AFM) were applied to the as-growth thin film to detect 

the quality of samples. Plasma etching method was used to fabricate micro sized magnetic 

sensors. For a multiferroic bulk senor in this work, solid state reaction method were used to 

fabricate the material and characterization methods such as X-ray diffraction for crystal 

structure, scanning electron microscopy for surface morphology, SQUID for magnetic 

properties, and electronic properties with a LCR meter. In the chapter, detailed information on 

most of the equipment and techniques will be introduced.        

2.1 Molecular Beam Epitaxy (MBE)   

 Since Cho and Arthur first successfully investigated GaAs epilayers in high-vacuum 

epitaxy growth techniques in the late 1960s, the particle beam technique developed rapidly. 

This development accelerated when different semiconductor devices with quantum-well 

structures were invented in the 1970s [54]. Since then, MBE began to be used in implement in 

all kinds of devices such as quantum-well lasers, ion gauge, high-electron mobility transistor 

and superlattice avalanche photodiodes. It is a versatile technique for growing thin epitaxial 

structures made of semiconductors, metals or insulators.  

The schematic picture of the basic physical processes in the MBE vacuum chamber is 

shown in Figure 2.1. The essential elements in the chamber include heater, substrate, effusion 
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cells, crucibles with source materials, RHEED gun and screen. There are also two valves 

connecting to transfer chamber and cryo-pump. There are mainly three zones where different 

physical phenomena take place. The first zone is the generation zone where molecular beams 

are generated from sources of the Knudsen effusion cell. The cell temperature can be accurately 

controlled by proportional-integral-derivative (PID) controllers. The desired chemical 

composition of the thin film can be obtained by choosing the appropriate cell and substrate 

temperature which will be addressed in detail in Chapter 4 . 

Figure 2.1 Molecular Beam Epitaxy (a) Schematic picture of MBE vacuum chamber (b) Picture of 

MBE used in this work 
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The second zone is where beams from different sources intersect each other and the 

vaporized elements mix together creating a gas phase contacting the substrate areas. The heater 

and substrate can be considered as the third zone where crystallization process takes place. 

During growth, the source materials are heated to a certain temperature, then by 

opening the shutter in front of the effusion cells, molecular beams evaporate into vacuum 

chamber and arrive at the substrate surface. Therefore, the evaporation rate is important 

because it controls the composition of grown epilayers. The growth rate maintained at 1μm/h 

is low enough that surface migration. Therefore, the surface of the grown film is very smooth. 

The RMS roughness can maintained lower than 1 nm in the present work. 

Although the van der Waals gap between quintuple layers makes less requirements of 

lattice matching with substrate in TI thin film growth, I still find mica susbtrate gives the best 

quality thin film compared to Si and GaAs. Figure 2.2 shows the mica substrate and mica 

crystal structure. It is a layer-by-layer structure. Before mounting the substrate on holder, a 

new fresh surface of mica can be cleaved which is easier than Si substrate standard cleaning 

procedure. Figure 2.3 (e) shows my TI sample on a 2 inch diameter mica substrate.  

There are mainly three aspects that make MBE superior to other deposition methods 

including the ultra-high vacuum (UHV) chamber during growth, the significantly more precise 

control of the beam fluxes and in-situ characterization methods. The definition of Ultrahigh 

Vacuum is the pressure p ≤ 10-9 Torr (1.33 ×10-7 Pa). In our experiments, the chamber base 

pressure is always maintained at p = 10-10 Torr and p = 10-9 Torr during growth. Since growth 

is carried out in such a high vacuum, the growth processes, far from thermodynamic 

equilibrium, is governed mainly by the kinetics of the surface processes. This is different from 
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other epitaxy such as liquid phase epitaxy or vapor phase epitaxy which is carried out under a 

thermodynamic equilibrium state around the substrate.  

 

 

Another advantage of MBE compared to other deposition techniques is the surface and 

crystal structure of the as-grown film can be in-situ diagnose by Reflection High-Energy 

Electron Diffraction (RHEED). The process of RHEED is a high energy beam of electrons (5-

40keV) is directed at a low angle (1° - 3°) to the substrate surface. The penetration of the beam 

into the surface is low and is restricted to the top several atomic layers, as the surface roughness 

is different due to the different deposition condition. The diffraction process in RHEED is also 

different. On rough surfaces, the process is dominated by the electron beam transmission into 

some part of the surface and then reflection which always leads to a spotty feature pattern, 

whereas, for the electron beam that undergoes true reflection diffraction, in which the beam 

 
Figure 2.2 Mica crystal(a) and mica substrate(b). Mica crystal structrure(c). Schematic picture of 

van der Waals epitaxy of TI on mica(d) and sample on mica in present work(e). 
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leaves the scatter from the same surface where the incident beam entered, the diffraction 

pattern is in the form of elongated streaks as shown in Figure 2.3.  

 

This is because electrons interacting with the epitaxial growth layers with a smooth 

surface can be considered as electrons interacting with a two-dimensional atomic layer. The 

third dimension can be neglected. Therefore, the surface layer in reciprocal space can be 

defined as rods perpendicular to the sample surface. Moreover, the magnitude of the wave 

vector 𝑘0
⃑⃑⃑⃑ 

     of the incident electron beam, also known as the radius of the Ewald sphere, can be 

calculated using this equation: |𝑘0
⃑⃑⃑⃑ | =

2𝜋

𝜆
≈ 2𝜋

√𝑉(1+10−6𝑉)

12.247
 where V is the accelerating voltage. 

In our experiment, the accelerating voltage is 20 keV. The corresponding magnitude of radius 

is |𝑘0
⃑⃑⃑⃑ |     = 5 nm, which is over ten times larger than the distance between reciprocal rods. Figure 

2.3 shows the schematic picture of an Ewald sphere with radius k0 cutting into the surface rods 

in reciprocal space leading to a streaky diffraction pattern. Note that, in order to prevent the 

 

Figure 2.3 Schematic showing an Ewald sphere with radius k0 cutting into the surface reciprocal 

rods, leading to a diffraction pattern. 
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scattering of electron beams by gas molecules in the chamber, RHEED must be performed at 

UHV chamber.  

2.2 Hall Sensor Fabrication by Plasma Etching and E-beam Lithography 

To demonstrate, a Hall effect sensor based on topological insulator thin films, Hall bars 

were fabricated using a plasma etching method. It is a kind of dry etching used widely in 

microfabrication process in semiconductor industry. It is superior to conventional wet etching 

methods in many aspects including no chemical consumption, no photoresist adhesion 

problems and anisotropic etching. The purpose of dry etching is to create an anisotropic etch 

and a unidirectional etch. An anisotropic etch is critical for high-fidelity pattern transfer.  

 A schematic picture of common plasma etching setup is shown in Figure 2.4(a). A 

plasma etching system consists of a vacuum chamber, two electrodes that create an electric 

field for accelerating ions towards the surface of the samples. What is between the two 

electrodes is plasma, which is generated with an radio frequency (RF) powered 

electromagnetic field applied to the bottom electrode. Plasma contains both positively and 

negatively charged ions in equal quantities.  The plasma etching requires a high vacuum level, 

for which the base pressure reach the value of 10-6 Torr in my experiment. Ar gas is used to 

generatre an Ar plasma. Ar gas enters through the top of the chamber and exits to the turbo 

pump system through the bottom for several times to make sure the chamber is filled with Ar 

gas. Then, a plasma can be initiated by applying an RF EM field with 100W in my experiment. 

After a few cycle of an EM field, the electrons are absorbed into the two electrodes leaving the 

relative massive Ar+. The electron accumulated charge in the wall generates a high voltage 

between two electrodes. The positive ions accelerated in the electric field, causes them to 

collide with the surface of the sample surface.  
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 The interaction of the surface and ions depends on the type of plasma with different 

principles including volatility, adsorption, chemical affinity and ion-bombardment. In my case, 

most of the etching happens in a physical process through ion-bombardment. The area covered 

by the Hall bar mask remains while other areas of the sample will be etched away. The etching 

rate depends on several aspects such as the electron source, pressure in the chamber and the 

gas species. Carefully adjust parameters regarding to the above aspects provides clean sharp 

interfaces after etching. The equipment I used is shown in Figure 2.4(b).  

Electron beam lithography method is used to fabricate small size sensor. The process 

flow chart is shown in Figure 2.5 (a). After epitaxy growth of TI thin film on mica, photoresist 

was applied. The Raith e-beam lithography [(Figure2.5(b)] is used to writing the feature on the 

thin film. Then developing the sample to transfer the feature on to photoresist. Then etching 

away TI and remove the photoresist.  

 

 

(a)  (b)  

Figure 2.4 Schematic picture of plasma etching for Hall sensor fabrication (a) and 

equipment in use for this work (b). 
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 The above sessions introduced sample preparation and sensor fabrication methods in 

my experiment. Since sensor design and device performance largely depend on the material 

properties, for example, in my study, magnetization, piezoelectricity, magnetostriction of 

multiferroic materials and carrier density, mobility of topological insulators, the 

characterizations play an important role for future device testing.  The following sessions are 

characterization methods after sample fabrication including X-ray diffraction and atomic force 

microscopy. After that, sensors made from an ME composite and TI thin films will be tested 

under various external fields. 

2.3 X-ray Diffraction Measurement (XRD) 

X-ray diffraction is a method of investigating the crystal structure and atomic spacing 

of materials. The measurement is based on constructive interference between a monochromatic 

X-ray and a crystal sample. An X-ray diffraction pattern can be used as a “fingerprint” to 

identify the crystal structure since every crystalline solid has its unique features of atom 

 

Figure 2.5 Electron beam lithography process of sensor fabrication. Flow chart of Hall 

sensor fabrication (a) and Raith e-beam lithography (b). 



www.manaraa.com

38 

 

arrangement. An X-ray is generated in ab X-ray tube which contains a cathode, an anode target. 

By applying high voltage to the cathode, the electron is “kicked” out of the cathode and hits 

the target, emitting X-ray. The generated X-rays are filtered by a matching material with 

particular absorption characteristics in front of the X-ray source to produce monochromatic 

radiation.  Then the X-rays are collimated to concentrate, and directed toward the sample. The 

diffracted rays are then received by a detector. Figure 2.6 depicts schematically the X-ray 

diffraction machine used in our experiments (Siemens D500) which is equipped with an X-ray 

tube, the sample under test and a detector to pick up the diffracted X-rays. The left part is the 

X-ray generator, the right part is the detector to receive rays reflected from the samples. In the 

middles is the sample and holder.  

The schematic picture of incident rays interacting with a sample is shown in Figure 

2.6(b). The path difference between the two waves is 2d sinθ . For constructive interference 

between these waves, the path difference must be an integral number of wavelength (λ). This 

leads to the Bragg equation: nλ=2d sinθ; where n is an integer, λ is the wavelength of incident 

rays, d is the spacing between the planes in the atomic lattice, and θ is the angle between the 

incident rays and the scattering planes. A diffraction pattern is obtained by measuring the 

intensity of scattered waves as a function of scattering angle (2θ). Certain crystal structure has 

its own diffraction pattern which can be researched in PDF card.  

In my work, an X-ray diffraction measurement is used for the following two purposes. 

First, it is used in detecting different phases during the process of fabricating a cobalt 

ferrite/barium titanate based composite sensor. Because cobalt ferrite has a spinel structure 

while barium titanate is tetragonal at room temperature, it is easy to use X-rays to detect these 

two phases in the composite. 

http://en.wikipedia.org/wiki/Wavelength


www.manaraa.com

39 

 

  

At the same time, extra phases can be detected if other peaks appear in the diffraction 

pattern. Second, the lattice spacing in a topological insulator along the c axis can be determined 

by X-ray diffraction. Since topological insulator epitaxy thin films are highly anisotropic with 

a single crystal structure in the x-y plane while epitaxy along c-axis, only diffraction peaks 

from the [55] family planes can be observed.  The detailed analysis of an X-ray diffraction 

pattern will be discussed in each result sections in following chapters.  

 

Figure 2.6  Schematic picture of (a) X-ray diffraction machine setup (b) incident X-rays with a 

certain wavelength interact with a crystal producing constructive interference. 
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2.4 Atomic Force Microscopy (AFM) 

Atomic Force Microscopy (AFM) is one of the Scanning Probe Microscopy family 

which is used to investigate the surface properties of materials from micron to atomic level. 

The invention of AFM open the door for studying the surface of poorly conducting materials. 

This field were prohibited due to the problem of surface charging when using the conventional 

surface detecting techniques. AFM probes the surface with a sharp tip, which is several 

microns long and less than 10nm in diameter. As shown in Figure 2.7, the tip is located at a 

free end of a cantilever about 100-200μm long. During experiment, the piezoelectric stick force 

the cantilever to vibrates near its resonant frequency. Forces of the interaction between the 

surface atom and tip caused the cantilever bend. The bending is monitored by a detector, in 

most cases, an optical lever. It operates by reflecting a laser off the cantilever. The reflected 

laser beam strikes a position-sensitive photo-detector consisting of four-segment photodetector. 

The differences between the segments of photodetector of signals indicate the position of the 

laser spot on the detector and thus the angular deflections of the cantilever. Several forces 

contribute to the bending of cantilever. The most commonly associated force is van der Waals 

force.   

During experiment, I use the tapping mode of Veeco MultiMode SPM. This is a non-

contact mode which means the cantilever is held on the order of tens to hundreds of angstrom 

from the sample surface. The force between the cantilever and surface is attractive according 

to the relationship between interatomic force and distance. The space between the tip and 

sample also protected sample being contaminated through the experiments. Besides the AFM 

image, for the device application concerning, RMS surface roughness is another important 
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parameter. In order to achieve high performance sensor, the rms roughness should be less than 

1nm to prevent the scattering of electrons by the surface in topological insulator epitaxy films. 

 

2.5 Composite Sample Preparation Procedures 

In this work, the ME sensor is based on a composite made from cobalt ferrite, a high 

magnetostrictive compound, and barium titanate, a typical piezoelectric compound. I used 

solid state reaction method to fabricate cobalt ferrite and barium titanate separately and then 

mix the powder of each and sintering them into composites. The sample preparation flow chart 

is shown in Figure 2.8. The raw materials are first weighed according to the stoichiometric 

formula of composition desired, for example, the fabrication of cobalt ferrite include high 

purity Co3O4(99.9%) and Fe3O4 (99.9%). And then, the weighted materials are put in a ball 

stainless steel milling jar and are mixed with 25g stainless steel balls. Then the jars are fixed 

on a ball milling machine, which can rotate at a specific speed (300r/min) and so as to mix the 

 

Figure 2.7 Schematic picture of atomic force microscopy (AFM). 
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powder to homogeneous state. The balls are used to increase the milling efficiency. It takes 

about six hours for mixing. Then, the mixture were pressed into lumps and then calcined in 

ambient air at certain temperature to carry out the chemical reaction and gain certain crystals. 

For pure CoFe2O4, the calcining temperature is ~1000°C. With adding dopants such as Ga into 

CoFe2O4, the calcination temperature varies dependent on the concentration of dopants. Since 

the calcination temperature has a great influence on density and other properties of final 

products, it is very important to control it to a narrow range. 

 

 After that, products will be a bulk material, which need to be grinded again to a 

convenient particle size by ball milling. After above process, PVA bender were added into the 

powder for sintering. The effect of the binder is to bind crystalline grains together and make 

the flakes easy to form. Grinding is needed to make sure the binder distributed in the sample 

homogenously. The granules are pressed into disk shape which will be used as the sensor 

during the following test. The samples were heated very slowly to 500°C and kept at this 

Figure 2.8  Sample fabrication and characterization flow chart of magnetoelectric 

multiferroic sensor 

 



www.manaraa.com

43 

 

temperature for one hour to remove any binder. After the binder burned out, the samples are 

taken to a higher temperature for sintering. The sintering temperature and time should be 

optimum for proper densification to occur without abnormal grain growth. The sintering of 

oxide ceramics must be carried out in an oxidizing atmosphere or in air. After sintering, the 

sensor are ready to be tested under different external fields such as temperature, electric field 

and magnetic field. The sensitivity can be calculated after the experiments. Chapter 8 will 

introduce magnetoelectric multiferroic sensor based on Ga doped cobalt ferrite and barium 

titanate composites. 
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CHAPTER 3. TOPOLOGICAL INSULATOR GROWTH AND 

CHARACTERIZATION  

 Since three-dimensional topological insulators were theoretically predicted and 

experimentally verified, they are by far the most studied TIs that could be applied to the 

microelectronics and spintronics. Among these groups, bismuth and antimony based binary 

and ternary compounds attract most attentions. Therefore, growth of these TI crystals are 

crucial toward the implementation of devices based on TI. Previous researches focus mainly 

on two aspects, reducing defects concentration in crystal and increasing the surface area to 

volume ratio, in order to suppress the proportion of bulk electrons from the surface electrons 

which enable the unique surface conduction differentiated from the bulk. Moreover, in order 

to lower the bulk conduction due to the position of Fermi level, doping element between 

different TI systems allows manipulating relative position of Fermi level and band gap to 

achieve the ideal band structure of TI. In this chapter, I will focus on the TI thin film growth 

and characterizations which is the basic for the following chapters and device applications.  

3.1 Introduction 

 The newly discovered and developed three-dimensional topological insulator draws an 

increasing attention due to their unique surface states, which leads to the exotic surface 

conductivity comparable to graphene. Among these 3D TI systems, V-VI semiconductor 

compounds are most studied because their relative simple surface band structure and relatively 

large bulk gap. These systems are based on bismuth (Bi), antimony (Sb) and tellurium (Te) 

binary and ternary compound including Bi2Te3, Sb2Te3, Bi2Se3, BixSb2-xTe3, BixSb2-xSe3. 

Although the bulk materials of these systems has been used as superior thermoelectric 

application due to its high thermoelectric figure of merit at room temperature, the application 
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regarding to topological surface state behavior requires much higher quality of crystals in order 

to reduce electron scattering and bulk electrons concentration. Many methods were reported 

on crystal growth of above systems both in bulk and nanostructure. Single crystal bulk 

topological insulator based on Bi2Te3, Sb2Te3, Bi2Se3 alloy were grown by the Bridgman 

method and self-flux techniques in many laboratories world-wide. The experimental 

observations of the exotic electronic states has been observed on the cleaved surfaces of bulk 

single crystals. However, with the explosion of interest in nanostructures such as nanoplates 

and nanoribbons of TIs since the surface properties are dominant due to large surface to volume 

ratio, most experimentalists works on exploring the nano sized, low dimensional TI crystals. 

Chemical vapor deposition (CVD), solvothermal synthesis, vapor-liquid-solid (VLS), vapor-

solid method (VS), sputtering, paulse laser deposition (PLD) and molecular beam epitaxy 

(MBE) are most popular techniques to synthesis TI nanostructure. Among all these methods, 

MBE growth gives the best quality crystals due to its layer-by-layer epitaxy growth 

mechanism. Moreover, TI thin film growth by this method allow us to precisely control 

thickness and doping element concentration. The surface roughness of thin film by MBE could 

reach lower than 1nm which enables them to be used as nano size electronic device with 

enhanced surface carrier mobility. In this work, all the sample are grown using MBE method. 

The properties of thin film can be influenced by parameters such as the source material 

temperature and flux rate, substrates, substrate temperature, growth rate and time, which will 

be addressed in the following parts.  

3.2 Source Material Temperature and Flux Rate Control  

In this work, MBE is used to grow TI thin films because of its deposition rate (typically 

less than 100 nm per min) that allows the films to grow atomic layer by atomic layer. These 
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deposition rates require proportionally ultra-high vacuum (UHV) to achieve the same impurity 

levels as other deposition techniques. The absence of carrier gases as well as the UHV 

environment result in the highest achievable purity of the grown films. Typically, the source 

material was heated up based on their vapor pressure shown in Figure 3.1.  

 

Figure 3.1 Vapor pressure curves of solid elements [56]. 
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In order to monitor the flux of source materials Sb and Te, several different 

temperatures of Sb and Te were chosen and grow separately on substrates. High quality thin 

film sample of Sb2Te3 requires the source material flux ratio of Te to Sb ratio approach 10 to 

1 during the growth. This is because Te molecules (Te2) tends to evaporate easier than atom 

Te, which will lead to low concentration in the chamber during growth, which results in lower 

quality film because of Te vacancy. During the same growth time period, the thickness of the 

sample with only Sb and Te respectively will reflect the source material flux during the growth. 

 

Figure 3.2 shows  summary of the thickness results as a function of source material 

temperature. When Te temperature at about 300°C and Sb at between 400°C to 425°C, the 

thickness ratio of Te and Sb is 10:1.  Further increasing temperature will speed up the 

deposition rate and destroy the epitaxy process. Overall, material flux rate is controlled by the 
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Figure 3.2 Thickness of Te and Sb thin film as a function of source temperature when 

substrates were at room temperature 
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heating temperature of source material. To get high quality film, not only the flux rate of 

different source should collaborate but also the heating temperature should maintained in a 

level keeping the epitaxy growth. 

3.3 Substrates Selection for Device Application 

As introduced in the previous chapter, V2VI3 based TI are rhombohedral structure at 

room temperature, which can also be described in a hexagonal unit cell with layered atoms 

known as quintuple layer (QL). QLs are held together with Van der Waals bond, which lead 

to crystal anisotropy in a certain direction similar to MoS2 and graphite. The crystal structure 

of TI determine the epitaxy mechanism is different from other material typically grown by 

MBE such as GaAs. The epitaxy of TI thin film on substrate displaying no dangling bonds and 

only weak van der Waals like forces act across interface of thin film and substrate, which is 

known as Van der Waals epitaxy (VDWE). This kind of epitaxy growth relaxes the lattice 

matching condition allowing a large variety of substrates such as sapphire, Si, InP, BaF2, 

GaAs. In this work, I also grow TI on different substrates, which are, Si, GaAs and Mica. The 

following parts will describe the problems during growth on different substrates and then 

compare the film quality on different substrates.  

GsAs (111) has been used as substrate to grow Sb2Te3. In the couples of samples I grew 

on (111) GaAs substrate before deoxidation process of the substrate, none of them have 

roughness below 1nm which is the level of roughness we generally get on good quality TI film 

on mica substrate. Figure 3.3(a) shows the AFM image of Sb2Te3 film on (111) GaAs with Sb 

temperature at 390°C, Te temperature at 300°C and substrate temperature at 235°C. The 

overall roughness in a 5μm by 5μm scanning area is 16.72nm. Some other samples shows more 

or less similar roughness. Figure 3.3(b) shows the surface morphology of sample after 
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deoxidation with the same growth parameter as Figure 3.3 (a), which is heating up substrates 

to 600°C and cool down before starting growth. The roughness dramatically decrease to 0.9nm 

in a 5μm by 5μm scanning area. However, the terrace structure is not clear and sharp. This may 

cause by the non-smooth surface of GaAs after heating up to high temperature.  

 
 

Another substrate, Mica, is also used to grow TI thin films. Representative surface profile 

of Sb2Te3 thin film grown on mica is shown in Figure 3.3. It is found that over large length 

scale (5×5 μm2), the thin film possesses a terrace structure, which indicates the layer-by-layer 

growth mechanism on mica substrate. The 2D-nature of the surface is also revealed by the 

streaky RHEED pattern shown in the inset of Figure 3.3(a).  The root-mean-square (RMS) 

roughness of the sample was measured to be 0.73 nm. Note that the present thin film possesses 

quite low surface roughness compared with MBE grown Bi2Se3 thin films on sapphire [57], 

Bi2Se3 thin films on flat Si (111) substrate [58], Bi2Se3 thin films on InP (111) substrates [59], 

and Sb2Te3 thin films on GaAs (111) substrates [60]. Our results indicate that mica substrate 

is a good candidate for the growth of TI thin films in terms of its atomic smooth surface, 

chemically inert nature, thermally stable state, highly transparent, flexibility, and perfect 

insulate. Therefore, results in following chapters are all based on TIs on mica.   

 

Figure 3.3 AFM image of Sb2Te3 film on <111> GaAs (a) before deoxidation and (b) after 

deoxidation at 600°C. 
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Topography of the thin film marked with dashed line is shown in Figure 3.4(b). This result 

demonstrates the terrace growth of thin film in a large area. For instance, at the distance of 4 

μm ~ 4.5 μm, five quintuple layers can be observed with thickness of each quintuple layer 

being ~ 1 nm. Thus, this result further confirms the layer-by-layer epitaxial growth of thin 

films. The topography of the scratched film and the height information are shown in Figure 

3.4(c). It is found that a steep edge is formed by scratching. The light color region on the left 

and the dark region on the right indicate TI thin film and mica substrate respectively. The white 

line indicates the height profile along the horizontal axis. The sudden drop of the black line 

reveals the thickness of thin film is ~ 12 nm. Considering 30 minutes growth time, the growth 

rate was maintained as 0.4 nm/min. Figure 3.5 shows Sb2Te3 growth on different substrates. 

We can see that Sb2Te3 growth on mica shows the largest area of terraces, the most sharp 

interfaces and lowest roughness according to AFM. Also, mica is cheaper and easier to prepare 

compared to Si and GaAs. Moreover, mica is also transparent in the visible light wavelength, 

 

 Figure 3.4 (a) AFM image of a Sb2Te3 thin film deposited on mica substrate. Inset shows its 

streaky RHEED pattern, indicating the 2D-growth of thin film.  (b) Topography of Sb2Te3 thin 

film along the dashed line, displays the quintuple-layer structure. (c) Thickness profile of Sb2Te3 

thin film. 
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together with its flexibility, TI thin film on mica substrate could potentially used in 

optoelectronics. 

 

3.4 Substrate Temperature Effect on Film Quality 

Substrate temperature is an important parameter that influence film quality. If the 

substrate temperature is too low, when atom deposited on substrate, there is not enough kinetic 

energy for the atoms to move around. Therefore, even if the flux ratio of the source is sufficient, 

inefficiency in the reaction exist between the atoms. We carried out a systematically study on 

the substrate temperature effect of thin film on mica shown in Figure 3.6. As shown in Figure 

3.6(a), the thin film surface shows elongated nano pillars when the substrate temperature is at 

170°C. However, if the temperature is too high, screw islands appear as shown in Figure 3.6(e). 

Only within a narrow temperature window, the film shows large terraces and epitaxy growth 

with low roughness. In this set of sample, the best substrate temperature is between 230°C to 

235°C. As shown in Figure 3.6(d) both nano pillars and screw islands disappear, only large 

terraces with 0.3nm RMS roughness observed in this substrate temperature. Since the surface 

state is the key to the unique property of topological insulator, low surface roughness plays 

crucial role in determining the success of thin film growth. The roughness of film with different 

 

Figure 3.5 Surface morphology of Sb2Te3 film on (a) <111> Si (b) <111> GaAs (c) mica 

substrate. 
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substrate temperature is summarized in Figure 3.6(f) which shows first decreasing and then 

decreasing tendency upon heating.  

 

3.5 Element Doping in Thin Film Growth 

Doping is a common method to control the properties of semiconductors. Similarly, 

doping element in TI results to interesting properties. As introduced above, Sb2Te3 is a p-type 

semiconductor while Bi2Te3 is naturally a n-type semiconductor. Doping Bi into Sb2Te3 will 

increase electron concentration so that tuning the Fermi level and band structure. Moreover, 

doping magnetic impurities in TI system destroy time reversal symmetry of the surface state 

and open a small surface gap which leads to quantum anomalous Hall effect. Therefore, to 

 

Figure 3.6 Surface morphology of Sb2Te3 film on mica substrate with different substrate 

temperatures (a) 170°C (b) 200°C C (c) 210°C (d) 230°C (e) 235 ̊°C; (f) RMS roughness 

of above samples. 

 

 

Figure 0.1 Surface morphology of Sb2Te3 film on mica substrate with different substrate 
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maintain high quality while adding dopant into TI is important to gauge the possible 

application of device application of TI.  

In the present work, the concentration of Bi in (Sb1-xBix)2Te3 is adjusted by controlling 

the cell temperature, and measured by EDS. Since large amount of signals came from mica 

substrate for 12 nm thin films in EDS measurement, we grew films with 60 nm in thickness to 

get a convincible composition analysis. Figure 3.7 shows the EDS analysis of (Sb1-xBix)2Te3 

thin film. All the EDS of (Sb1-xBix)2Te3 on mica substrate share the same feature. Therefore, 

we take (Sb1.82Bi0.18)2Te3 as an example to show the analysis. The EDS spectrum in Figure 

3.7(a) confirms the chemical composition of the thin films. The elements such as O, Na, K, Si, 

Al are from mica substrate. The ratio of different elements in (Sb1-xBix)2Te3  thin films can be 

measured, and the composition of  (Sb1-xBix)2Te3 as a function of the Bi cell temperature during 

MBE growth is shown in Figure 3.7(b). In this work, Bi started to appear in (Sb1-xBix)2Te3 with 

Bi temperature higher than ~ 430 oC (Bi concentration, x = 0.014). The highest doping 

concentration is x = 0.29 with Bi temperature ~ 500 oC.  The Bi concentration in (Sb1-xBix)2Te3 

as a function of cell temperature can be fitted well with exponential equation [shown in Figure 

3.7(b)], which indicates the doping of Bi is a thermally activated process controlled by the 

evaporation of Bi from the diffusion cell. 
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 In order to monitor the surface morphology and roughness of thin film after doping Bi, 

AFM experiments are carried out. Figure 3.8 demonstrates the evolution of morphology of thin 

films with Bi concentration in (Sb1-xBix)2Te3. When the Bi is doped into (Sb1-xBix)2Te3 

samples, the surface roughness begins to increase. It is shown in Figure 3.8(a) to (c) that with 

doping Bi concentration as x = 0.02 to 0.07, the surface is generally flat and the overall 

roughness remains below 2 nm. Pyramidal-shape terrace over ten quintuple layers can be 

observed but rarely. With increasing the Bi concentration from x = 0.07 [Figure 3.8(c)] to x = 

0.11 [Figure 3.8(d)], the size of the pyramidal-shape terrace becomes larger and the volume 

 

Figure 3.7 Composition and structure analysis of  (Sb1-xBix)2Te3. (a) The EDS spectrum 

of (Sb1-xBix)2Te3 with x = 0.18. (b) Bi concentration of (Sb1-xBix)2Te3 as a function of Bi 

diffusion cell temperature. 
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fraction of it also increases. Correspondingly, the surface roughness of thin film jumps to 2.81 

nm. The surface morphology of thin films shows quite high density of the pyramidal-shape 

terraces with further increases in Bi doping level x = 0.18 to 0.29.  

 

3.6 Characterization on Phase Formation of TI 

Reflection High-Energy Electron Diffraction (RHEED) is a tool for real-time 

characterization of surface and crystal structure of thin film. It is frequently found on ultrahigh 

vacuum systems such as MBE. RHEED patterns result from and contain detailed information 

about the crystal properties of surface. The typical setup of RHEED is an electron beam 

impinges onto film surface at a nearly grazing angle and is reflected onto the screen. It is a 

surface sensitive technique that the high energy electron beam only probe topmost atomic 

 

Figure 3.8(a) ~ (f) AFM images of (Sb1-xBix)2Te3 thin film as a function of Bi 

concentration x. Large amount of pyramidal-shape terraces over ten quintuple layers 

can be observed when x > 0.11. 
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layers. Therefore, a streaky RHEED pattern indicates single crystal with smooth surface. As 

the surface becomes rough but still single crystal, the streaks changed to spotty structure results 

from the scattering of the electrons through the roughness islands or terraces. Figure 3.9 shows 

a comparison of two Sb2Te3 thin film sample with different substrate temperature. The spotty 

like structure of RHEED pattern [Figure 3.9(a)] indicating a rough surface while the roughness 

of thin film with streaky like pattern in Figure 3.9(b) shows roughness about 0.5nm. Therefore, 

the RHEED provides real-time information of thin film quality, hence enables a quick 

determination of optimized growth parameter. 

 
We further use X-ray diffraction method to characterize the crystallographic properties of 

films. The crystal quality and orientation of deposited Sb2Te3 thin film on mica were 

determined by XRD. It is found that the mica substrate is characterized as sharp (001) family 

diffraction peaks, which indicates its clave plane as c-axis. The (003) family diffraction peaks 

of Sb2Te3 are observed, which suggests that the deposited thin films preferentially align alone 

its c-axis. Moreover, no extra peaks are observed indicating that no secondary phase appears. 

We determined that its c lattice parameter is 30.42 Å from the diffraction pattern, being 

consistent with its bulk value. 

 

Figure 3.9 Reflection High-Energy Electron Diffraction (RHEED) as real-time tool to 

monitor the surface of TI thin film  

 

 

 

 

 

 

 

Figure 0.10  

Reflection High-Energy Electron Diffraction (RHEED) as real-time tool to monitor the 

surface of TI thin film  
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CHAPTER 4. MAGNETOTRANSPORT STUDY OF TOPOLOGICAL 

INSULATOR THIN FILM ON MICA SUBSTRATE  

To analyze the exotic surface electronic property of TI thin film, we deposit high 

quality (Sb1-xBix)2Te3 thin films on mica substrate by molecular beam epitaxy and investigate 

their magnetotransport properties. It is found that the average surface roughness of thin films 

is lower than 2 nm. Moreover, a local maxima on the sheet resistance is obtained with x = 

0.043, indicating a minimization of bulk conductivity at this composition. For 

(Sb0.957Bi0.043)2Te3, weak antilocalization with coefficient of -0.43 is observed, confirming the 

existence of 2D surface states. Moreover Shubnikov-de Hass oscillation behavior occurs under 

high magnetic field. The 2D carrier density is then determined as 8.08×1016 m-2, which is lower 

than that of most TIs reported previously, indicating that (Sb0.957Bi0.043)2Te3 is close to ideal TI 

composition of which the Dirac point and Fermi surface cross within the bulk bandgap. Our 

results thus demonstrate the best estimated composition for ideal TI as (Sb0.957Bi0.043)2Te3 and 

will be helpful for designing TI-based devices. 

 

4.1 Introduction 

Topological insulators (TIs), due to its dispersionless surface state[14, 19] are promising 

candidates for nano-electronics, spintronics, and magnetic sensors [15, 61, 62]. The reason for 

this nontrivial surface state is the bulk band inversion which arises from the strong spin-orbit 

coupling [19]. This surface state of TIs protects the electrons from back scattering which may 

lead to ultra-high conductivity [63]. Experimentally, the topological surface state has been 

found in 3D TI materials such as Bi2Te3 and Sb2Te3. To reduce the surface crystalline defect 

and obtain high bulk resistivity, TIs are grown on various substrates such as sapphire and GaAs. 
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Among these substrates, muscovite mica which enables van der Waals epitaxy shows 

advantages in the growth of TI with low crystalline defect and high electrical properties [24]. 

Moreover, the mechanical flexibility and transparency of mica enable the application of TIs in 

flexible optoelectronics [64].  

The ideal TIs require both Dirac cone and Fermi level lying inside the bulk bandgap where 

all the electrical conductivities are attributed by the TI surface [19]. However, TIs such as 

Bi2Te3 and Sb2Te3 are reported as n-type and p-type band structure respectively [65]. Therefore, 

their band structures are required engineered to achieve ideal TI. Due to the structural 

compatibility of Bi2Te3 and Sb2Te3, it is possible to tune the Fermi level and Dirac cone by 

doping Bi into Sb2Te3 to make an ideal TI. Moreover, since the band structure of TIs can be 

affected by the epitaxial constraint from the substrate [66], it is still necessary to study the 

growth of (Sb1-xBix)2Te3 on mica substrate and experimentally locate the ideal TI composition 

for the practical applications. 

In this chapter, (Sb1-xBix)2Te3 thin films were deposited on mica substrate with varying Bi 

concentration, aiming to study the structural characterize of thin films on mica substrate and 

locate the ideal TI composition. The magneto transport responses of (Sb1-xBix)2Te3 near ideal 

TI composition will be studied in detail to understand the electron properties of its surface state.  

4.2 Experiment  

(Sb1-xBix)2Te3 thin films with thickness of 12 nm were deposited on mica substrate by 

molecular beam epitaxy. The quality of the thin films during growth was monitored with 

reflection high energy electron diffraction (RHEED). The concentration of Bi in (Sb1-xBix)2Te3 

thin films was modulated by the cell temperature of Bi. X-ray diffractometer (XRD) were used 

to characterize structural information thin films. The surface morphology and thickness of thin 
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films were characterized by atomic force microscope (AFM). The composition of thin films 

was analyzed with the FEI Quanta FE-SEM. Room temperature sheet resistance of thin films 

was measured using four-point probe method. The magnetotransport response of thin film at 

low temperature was performed in physical properties measurement system.  

4.3 Results and Discussion 

4.3.1 Structure of (Sb1-xBix)2Te3 thin films deposited on mica substrate 

Surface morphology of Sb2Te3 thin film grown on mica is shown in Figure 4.1(a). Over 

large length scale (5×5 μm2), the thin film possesses a terrace-like structure. Along dashed line 

of Fig. 1(a), the surface shows stepwise increase of its height [Figure 4.1(e)] with a value of ~ 

1 nm (i.e. one quintuple layer)[60] which indicates the 2D growth of thin films on mica 

substrate. With doping Bi into Sb2Te3 [Figure 4.1(b), 1(c), and 1(d)], pyramidal-shape terrace 

gradually appears. As a result, the surface roughness increases. The highest surface roughness 

is ~ 1.9 nm with x = 0.07.  However, this value is still low when compared with TIs grown on 

substrates such as InP (111) and GaAs (111) (roughness ~ 8 nm) [59, 60], which demonstrates 

the feasibility of mica substrate on growth of (Sb1-xBix)2Te3 with varying Bi concentration. 

Representative XRD profile of (Sb1-xBix)2Te3 with x = 0.043 is shown in Figure 4.1(f). 

Diffraction peaks from the [55] family planes of (Sb0.957Bi0.043)2Te3 are observed, which 

suggests that thin films are grown along its c-axis.  
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4.3.2 Effect of Bi on sheet resistivity of (Sb1-xBix)2Te3 thin films 

To locate the ideal TI composition in (Sb1-xBix)2Te3 grown on mica substrate, sheet 

resistivity of thin films were studied. Based on previous results [67] for Sb2Te3 [Figure 4.2(a1)], 

the DP locates in the bulk bandgap while the FL lies in the valence band; while for Bi2Te3 

[Figure 4.2(a3)], the DP is inside the valence band with FL cutting the conduction band. The 

band structure of Sb2Te3 and Bi2Te3 thus suggest a low value of their sheet resistivity. Doping 

of Bi gradually shifts up the FL and pushes down the DP [67]. As a result, an ideal TI with FL 

and DP cross within the bulk bandgap can be formed [Figure 4.2(a2)]. With extremely reducing 

bulk carrier density, the (Sb1-xBix)2Te3 near ideal TI should show obvious increase in sheet 

 

Figure 4.1 Characterization of topological insulator thin films (a) ~ (d) AFM image of thin 

films (Sb1-xBix)2Te3 grown on mica substrate, where (a) x = 0.0, (b) x = 0.014, (c) x = 

0.043, and (d) x = 0.07. RHEED pattern of thin film (Sb2Te3) during growth is shown in 

(a) inset. (e) Height profile of Sb2Te3 thin film along the dashed line in (a). (c) XRD profile 

of (Sb1-xBix)2Te3 thin film with x = 0.043. 

 

 

 

 

 

Figure 0.1 Characterization of topological insulator thin films (a) ~ (d) AFM image of 

thin films (Sb1-xBix)2Te3 grown on mica substrate, where (a) x = 0.0, (b) x = 0.014, (c) x 
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resistivity [67]. Moreover, the energy difference between DP and FL of Sb2Te3 (~ 0.01 eV) is 

much smaller than that of Bi2Te3 (~ 0.3 eV) [67]. Thus, the ideal TI composition is expected 

close to Sb2Te3 terminal. Based on above analysis, sheet resistance measurement was 

performed on (Sb1-xBix)2Te3 with x = 0.014, 0.043, and 0.07 at room temperature. As Figure 

4.2(b) shows, with doping Bi, a peak in sheet resistivity is observed in (Sb1-xBix)2Te3 at x = 

0.043. The sheet resistivity decreases with deviating from this composition. Such experimental 

observation is consistent with the schematic picture in Figure 4.2(a1) ~ 2(a3). It is indicated 

that (Sb1-xBix)2Te3 with x = 0.043 is close to ideal TI. This doping value is also consistent with 

previous work suggesting the ideal TI composition as x = 0.04 ~ 0.06 [67],  indicating that 

epitaxial constraint generated by mica substrate is weak on determining the composition of 

ideal TI in (Sb1-xBix)2Te3. 

 

 

Figure 4.2 (a1) ~ (a3) Schematic illustrations on tuning the Fermi level and surface Dirac 

point of (Sb1-xBix)2Te3 with increasing Bi concentration. (b) Sheet resistivity of (Sb1-

xBix)2Te3 thin films at room temperature. 
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4.3.3 Weak antilocalization of (Sb0.957Bi0.043)2Te3 thin films under low magnetic field 

To study the topological surface state near ideal TI composition, magnetotransport 

responses of (Sb1-xBix)2Te3 (x = 0.043) at low temperature were studied under low magnetic 

field. At T = 2.5 K [Figure 4.3(a)], ΔGxx(B) shows sharp upward cusps shape near zero 

magnetic field, demonstrating a weak antilocalization effect (WAL) [24, 68, 69]. Such 

behavior originated from the suppression of deconstructive interference of π Berry’s phase 

with applying magnetic field provide a clear signature on the existence of topological surface 

state [69]. At T = 7.5 K and 10 K, the WAL is weakening indicating the decrease of phase 

coherence length with increasing thermal noise.  

 

 

 Figure 4.3 (a) Magnetoconductance of (Sb1-xBix)2Te3 with x = 0.043 at low magnetic field. 

(b) Fitting of conductance change with Hikami-Larkin-Nagaoka (HLN) model. (c) Phase 

coherence length as a function of temperature, fitted with power law LΦ ~Tβ. 
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The WAL of TI can be described with Hikami-Larkin-Nagaoka (HLN) equation as 

ΔG(B)=-(αe2/πh)•[Ѱ(0.5+h/8eπLΦ
2)-ln(h/8eπLΦ

2)], where α is WAL coefficient, e is electron 

charge, h is Planck’s constant, Ѱ is digamma function, and LΦ  is phase coherence length[70]. 

The best fitting at various temperature [Figure 4.3(b)] yields α = -0.43, confirming the 2D 

character of WAL since theoretically α should equal to -0.5 for 2D surface state[71]. Figure 

4.3(c) shows that the LΦ decreases from 97 nm to 53 nm with increasing temperature. The 

temperature dependent of LΦ is further fitted with a power law LΦ ~Tβ with β = -0.42.  Since β 

is equal to  -1/2 for 2D electron system[72], the present WAL result confirms the existence of 

2D topological surface state in (Sb1-xBix)2Te3 (x = 0.043) thin films deposited on mica substrate.  

4.3.4 Quantum oscillation of (Sb0.957Bi0.043)2Te3 thin films under high magnetic field 

To study the surface state near ideal TI composition in detail, magnetotransport 

responses of (Sb0.957Bi0.043)2Te3 were further studied under high magnetic field. As shown in 

Figure 4.4(a), Hall resistance of sample demonstrates obvious Shubnikov-de Hass (SdH) 

oscillation at 2.5 K [63]. The dRxy/dB shows periodical oscillations with 1/B [Figure 4.4(a) 

inset]. The oscillation frequency is extracted by fast Fourier transform as FSdH = 33.3 T. The 

oscillation frequency is related with the area of Fermi surface AF as FSdH = [h/4π2e]AF. 

Assuming a circular area, the Fermi surface can be expressed as AF = πkF
2, where kF is Fermi 

vector [63, 73]. The 2D carrier density n2D can then be determined as n2D = kF
2/4π [73]. For 

(Sb0.957Bi0.043)2Te3, the Fermi vector and 2D carrier density are calculated as kF=3.18×108 m-1 

and n2D=0.81×1016 m-2. SdH oscillation is also observed in normalized magnetoconductance 

[Figure 4.4(b)], of which the amplitude decreases with increasing temperature [Figure 4.4 (c)].  

The temperature dependence of oscillation amplitude can be described by Lifshitz-

Kosevich (LK) model as Δσxx(T)= σxx(0)•(T)/ sinh[(T)] and (T)=2π2kBTmcyc/(ħeB) where 
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mcyc is cyclotron mass [63]. The effective cyclotron mass is obtained as mcyc= 0.086 me, where 

me is mass of free electron. Compared with the surface state reported previously (for Bi2Te3, 

n2D~1.2×1016 m-2, kF ~ 4×108 m-1
 , and  mcyc ~ 0.15 me),[24] the 2D carrier density, cyclotron 

mass, and Fermi vector of (Sb1.96Bi0.04)2Te3 thin film show lower values. It is indicated that the 

relative position between Dirac point and Fermi surface are close, being consistent with Figure 

4.2(b). Our results therefore demonstrate that (Sb1-xBix)2Te3 with x = 0.043 grown on mica 

substrate approach the ideal TI [Figure 4.2(a2)].  

 

4.4 Conclusion 

In this work, high quality epitaxial (Sb1-xBix)2Te3 thin films with 0 < x < 0.07 were grown 

on mica substrate successfully. The surface roughness of the thin films increases with doping 

Bi, but keep lower than 2 nm. When Bi concentration is x = 0.043, the sheet resistance shows 

a local peak, indicating that it is close to ideal TI composition. Weak antilocalization effect 

with coefficient of -0.43 and phase coherence length of > 70 nm is observed when the 

 

Figure 4.4 (a) Shubnikov-de Hass (SdH) oscillation of Hall resistance for (Sb1-xBix)2Te3 

with x = 0.043 at 2.5 K. Inset shows the periodical oscillation of dRxy/dB with 1/B. (c) SdH 

oscillation behavior of its magnetoconductance as various temperatures. (d) Normalized 

conductivity amplitude, fitted with Lifshitz-Kosevich (LK) model. 

 

 

 

 

 

Figure 0.10 (a) Shubnikov-de Hass (SdH) oscillation of Hall resistance for (Sb1-xBix)2Te3 
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temperature is lower than 10 K, confirming the existence of 2D surface state. Under high 

magnetic field, (Sb1-xBix)2Te3 with x = 0.043 demonstrates clear Shubnikov-de Hass (SdH) 

oscillation behaviors and shows a low value of 2D carrier density, cyclotron mass, and Fermi 

vector. Our results thus demonstrate that the relative position between Dirac point and Fermi 

surface are close in (Sb1-xBix)2Te3 with x = 0.043 on mica substrate. Our results on growth of 

(Sb1-xBix)2Te3 thin film and location of ideal TI composition will be helpful for the application 

of TIs in flexible optoelectronics, spintronics, and magnetic sensors. 
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CHAPTER 5. STUDY ON MAGNETICALLY DOPED TOPOLOGICAL 

INSULATOR   

As stated in the previous chapters, ferromagnetic phase can be introduced by using 

element doping in topological insulators. This time-reversal symmetry breaking process allows 

the formation of an energy gap on the surface state. Therefore, it is interesting to investigate 

the effect of magnetic dopants in TI thin films. In this chapter, we systematically investigated 

the effect of magnetic doping on magnetic and transport response of Bi2Te3 thin films. CrxBi2-

xTe3 thin films with x=0.03, 0.14, and 0.29 were grown epitaxially on mica substrate with low 

surface roughness (~ 0.4 nm).  It is found that Cr is a n-type doping element in Bi2Te3, and 

increases the magnetic response of CrxBi2-xTe3. When x=0.14 and 0.29, long range 

ferromagnetism appears in CrxBi2-xTe3 thin films, where anomalous Hall effect and weak 

localization of magnetoconductance were observed. The ferromagnetic transition temperature, 

coercive field, and remnant Hall resistance of thin films increase with increasing Cr 

concentration. The Arrott-Noakes plot for CrxBi2-xTe3 demonstrate that the critical mechanism 

of the ferromagnetism can be described better with 3D-Heisenberg model than with mean field 

model. Our work may benefit for the practical applications of ferromagnetic TI with opened 

surface band gap in spintronics and magnetoelectric devices.  

 

5.1 Introduction 

Topological insulators (TIs) with gapless surface state attract attentions both for 

fundamental science and potential applications. The reason of this nontrivial surface state is 

their bulk band inversion and massless Dirac-cone-like surface state arising from the strong 

spin-orbit coupling [19]. This surface state is protected by the time reversal symmetry which 
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prohibits the backscattering on non-magnetic impurities, and induces a weak antilocalization 

of Dirac fermions [74].  

 The surface state of TIs protected by time reversal symmetry can be broken by a 

proximity effect with interfacing an insulating ferromagnetic material or introducing magnetic 

impurities [75, 76]. Consequently, magnetic impurities in TIs can cause the opening of the 

surface band gap which can induce phenomena such as the quantized anomalous Hall effect 

and magnetoelectric effect [16, 77]. Due to the magnetic doping, it is shown that a weak 

localization (WL) behavior emerges and competes with the weak antilocalization effect (WAL) 

[78]. Theoretically, introducing of transition metal ions can lead to ferromagnetism by either 

Van Vleck mechanism or Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange mechanism [20, 

76, 79]. However, the critical property of ferromagnetism in magnetic TIs is not well studied. 

Moreover, introducing magnetic impurities may roughen the surface of thin films and result in 

an increasing of carrier concentration, which prohibits the appearance of quantized anomalous 

Hall state [80]. Thus, to realize practical applications of the nontrivial state in TIs, extensive 

understanding of magnetically doped TIs is still required.   

 In this chapter, we report the effect of magnetic impurity on manipulating the magnetic 

and transport response of CrxBi2-xTe3 thin films with low surface roughness. We will show that 

Cr atoms increase the magnetization and establish ferromagnetism in CrxBi2-xTe3 thin films. 

Moreover, the Arrott and Arrott-Noakes plot [81, 82] for CrxBi2-xTe3 indicate that the critical 

mechanism of ferromagnetism in CrxBi2-xTe3 can be described better with 3D-Heisenberg 

model than mean field model.  
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5.2. Experiments 

 CrxBi2-xTe3 thin films were grown on mica substrate using molecular beam epitaxy with 

base pressure as ~ 5×10-10 Torr. The temperature of Bi and Te source materials was adjusted 

to obtain a Te-rich environment. The growth rate was kept as 0.3 nm/min. The surface 

topography of the thin films was characterized by atomic force microscope (AFM). Root mean 

square (RMS) surface roughness was then quantitatively calculated. Thin films with thickness 

of 12 nm were deposited. The thickness was determined by measuring the height of a scratch 

made carefully on thin films with AFM in tapping mode [83]. The composition analysis was 

carried out at the FEI Quanta FE-SEM. The magnetic property measurement was performed 

using a SQUID magnetometer. The thin film was fabricated into 1 mm wide Hall bar geometry 

by plasma etching. The transverse and longitudinal resistances under applied magnetic field 

were measured with physical properties measurement system. The applied AC current was 

0.01 mA, with the frequency as 19 Hz.    

5.3. Results and Discussion 

5.3 1 Structural characterization of CrxBi2-xTe3 thin films 

 The surface morphology of CrxBi2-xTe3 with x = 0.00, 0.14, and 0.29 are shown in 

Figure 5.1(a). Without doping Cr, the Bi2Te3 shows large scale terraces. The height of a terrace 

is ~ 1 nm (i.e. one quintuple layer of Bi2Te3). When x = 0.14 and 0.29, large scale terraces 

cannot be found. The surface morphology of thin films changes with an obvious reduction of 

terrace width, which may due to the competition between Bi atoms and Cr atoms at Bi site.[84] 

Although the width of terraces decreases with doping Cr, layer-by-layer epitaxial growth of 

thin films remains. Based on the AFM images, we calculated the surface RMS roughness of 
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thin films. As Figure 5.1(b) shows, a low surface roughness for all samples (~ 0.4 nm) is found. 

The roughening of the flat surface with doping Cr reported previously[80] is not observed in 

the present thin films, which may result from a low growth rate here.  

 

The crystal quality and orientation of thin films were studied by x-ray diffractometer 

(XRD). Figure 5.1(c) shows the XRD spectrum of CrxBi2-xTe3 with x= 0.29. The mica substrate 

 

Figure 5.1 Structural characterization of CrxBi2-xTe3 thin films. (a) AFM images of CrxBi2-

xTe3, with x = 0.00, 0.14, and 0.29. (b) Surface RMS roughness as a function of Cr 

concentration in CrxBi2-xTe3. (c) XRD pattern of CrxBi2-xTe3 with x = 0.29 grown on mica 

substrate 
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is characterized as [85]amily diffraction peaks, indicating its cleavage plane as the c-axis. The 

diffraction peaks from family of the [55] planes of CrxBi2-xTe3 are observed, which suggests 

the thin films preferentially align along their c-axis. From the diffraction pattern for CrxBi2-

xTe3 with x=0.29, we determine that its c-axis lattice parameter is 30.59 Å, which is higher 

than that of Bi2Te3 (30.49 Å in c-axis lattice parameter with interlayer spacing as 2.56 Å)  [86]. 

Because the ionic radius of Cr is smaller than that of Bi, the increase of c-axis lattice parameter 

indicates that Cr not only substitutes Bi atoms but also locates in the Van der Waals gaps 

between quintuple layers, which is similar to the doping mechanism of Cu in Bi2Se3 [87].     

5.3.2 Magnetization of CrxBi2-xTe3 thin films 

 To investigate the magnetic properties of CrxBi2-xTe3, the out-of-plane magnetic 

moment of the thin films with surface area as 0.0789 cm2 were measured. As Figure 5.2(a) 

shows, when x = 0.03, the magnetization of the thin film keeps as negative during cooling, 

indicating that the Bi2Te3 with slightly Cr doping is still a diamagnetic material. When x = 

0.14, the magnetization of the thin film increases. Its value becomes positive. Moreover, the 

magnetization of the thin film increases with cooling below ~ 25 K. The saturation of 

magnetization with further cooling is not observed. CrxBi2-xTe3 with x = 0.29 shows higher 

magnetization in the whole temperature window. The magnetization of the thin film starts to 

increase below ~ 50 K. The increase of the magnetization with increasing Cr concentration 

indicates that the magnetic moment of the samples are easier to be polarized out-of-plane, 

which is similar to previous report on Fe-doped Bi2Se3 that the c-axis is the magnetic easy axis 

[88].  
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 The dM/dT - temperature curves of samples are shown in Figure 5.2(b). It is found that 

the temperature where the dM/dT curve starts to deviate from linear one increases with 

increasing Cr concentration. Moreover, the dM/dT ~ T curve for x=0.29 shows a small peak at 

~ 20 K, indicating that there may be a magnetic transition. However, due to the low net 

magnetic moment of the samples and the thin film effect [89], this peak is not measured as 

clearly as it should be in bulk ferromagnetic materials; and the behavior of magnetization 

above the peak temperature deviates from that of a paramagnet. As a result, the existence of 

ferromagnetism in CrxBi2-xTe3 is difficult to be concluded here. In the following section, we 

investigate the magnetic properties of CrxBi2-xTe3 by measuring the magnetic field dependence 

of electrical transport properties [90, 91].  

 

Figure 5.2 (a) The temperature dependence of magnetization under 0.05 T for CrxBi2-xTe3 

with x=0.03, 0.14, and 0.29. (b) The corresponding dM/dT vs. T curves. 

 

 

 

 

 

Figure 0.4 (a) The temperature dependence of magnetization under 0.05 T for CrxBi2-xTe3 

with x=0.03, 0.14, and 0.29. (b) The corresponding dM/dT vs. T curves. 
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5.3.3 Electrical transport and anomalous Hall effect of CrxBi2-xTe3 thin films  

 The Hall resistance and magnetoconductance (MC) of CrxBi2-xTe3 are shown in Figure 

5.3. As Figure 5.3(b1) shows, when x=0.03 the WAL behavior of MC cannot be observed. 

Instead, a WL behavior is shown at 2.5 K. By heating up to 7.5 K, the WL behavior changes 

into a classical parabolic dependence of magnetic field without observing the WAL, indicating 

the dominance of WL behavior. Moreover, when x=0.03, Hall resistance does not show any 

hysteresis with magnetic field.  

 With increasing the Cr concentration, features of ferromagnetism are observed. As 

shown in Figure 5.3(a2) and (a3), the Hall resistance of CrxBi2-xTe3 with x=0.14 and 0.29 

shows hysteretic behavior resulting from the anomalous Hall effect, suggesting an occurrence 

of magnetic ordering. As in regular ferromagnetism, the coercive field and remnant Hall 

resistance increase with cooling. With increasing Cr, higher coercive field and remnant Hall 

resistances are observed; the hysteresis of Hall resistance also vanishes at a higher temperature. 

It is indicated that with increasing Cr concentration, ferromagnetism in CrxBi2-xTe3 is 

stabilized; and enhanced anomalous Hall effect can be obtained.  

The MC of CrxBi2-xTe3 with x= 0.14 and 0.29 consistently show the appearance of 

ferromagnetism in thin films. As Figure 5.3(b2) and (b3) show, the MC of CrxBi2-xTe3 with 

x=0.14 and 0.29 shows WL behavior at 2.5 K as a non-monotonic increase of MC with 

increasing magnetic field. Moreover, the hysteresis loop of MC shows a butterfly shape, 

indicating the existence of ferromagnetism. Even though it is important to directly measure the 

hysteresis loop of magnetization with applied magnetic field to further confirm the 

ferromagnetism in thin films, we have verified by both MC and Hall resistance that 

ferromagnetism is established in CrxBi2-xTe3 with x=0.14 and 0.29.  
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 Comparing Figure 5.3(a1), (a2), and (a3), the sign of Hall coefficient changes with 

incorporating Cr in Bi2Te3. For CrxBi2-xTe3 with x=0.03, Hall coefficient shows a p-type 

conductivity. When x=0.14 and 0.29, the sign of Hall coefficient becomes positive 

demonstrating an n-type conductivity, indicating the Cr is an electron donor in Bi2Te3. We 

extracted the carrier concentration using Hall coefficient |RH|=1/en by examining the Hall 

 

Figure 5.3 (a1), (a2), and (a3) Hall resistance curves at low magnetic field for CrxBi2-xTe3 

with x = 0.03, 0.14, and 0.29 respectively. (b1), (b2), and (b3) Corresponding normalized 

magnetoconductance curves. The temperature dependent carrier concentration of 

CrxBi2-xTe3 is shown in (a1) inset. 
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resistivity at large field where the relation between resistivity and field is linear, where e is the 

electron charge and n is the carrier concentration. As Figure 5.3(a1) inset shows, carrier 

concentration of CrxBi2-xTe3 decreases with introducing Cr, indicating that Cr reduces free 

carriers of p-type Bi2Te3. The increasing of carrier concentration by doping Cr in samples with 

high surface roughness (~1 nm) [80] is not observed in this work, suggesting that the growth 

of low surface roughness samples helps to reduce the bulk carrier concentration.  

5.3.4 Critical property of the ferromagnetism in CrxBi2-xTe3 thin films 

 The critical property of the ferromagnetism in CrxBi2-xTe3 were studied by Arrott 

plot[81] and Arrott-Noakes plot [82] techniques, where the Curie temperature was also 

determined. The Arrott plots at various temperatures for CrxBi2-xTe3 x = 0.14 and 0.29 were 

calculated from Figure 5.3(a2) and (a3). As Figure 5.4(a) and (c) show, the Rxy
2 is not linear 

related to μ0H/Rxy at high magnetic field, indicating the ferromagnetic transition in heavily 

doped CrxBi2-xTe3 deviates from mean field model. Thus, it is difficult to extract Curie 

temperature from Arrott plot.  

It was predicted that the ferromagnetism in TIs may result from RKKY interaction of 

magnetic impurities consisting of Heisenberg-like, Ising-like, and Dzyaloshinskii-Moriya-like 

terms [79]. Thus, we calculated the Arrott-Noakes plot at various temperatures for CrxBi2-xTe3 

x=0.14 and 0.29 from Figure 5.3(a2) and (a3) by assuming β = 0.36 and γ = 1.386 (3D-

Heisenberg model). As Figure 5.4(d) shows, the Rxy
1/β remains almost linear with respect to 

(μ0H/ Rxy)
1/γ close to 22.5 K, indicating that the critical mechanism of ferromagnetism in 

CrxBi2-xTe3 can be described better with 3D-Heisenberg model than with mean field model. 

Based on Arrott-Noakes plot, we extract the Curie temperature of CrxBi2-xTe3 with x=0.14 and 
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x=0.29 as ~12.5 K and ~23.8 K, being consistent with the magnetic measurement shown in 

Figure 5.2. 

 

5.4 Conclusion 

 In this work, the effect of magnetic impurities on CrxBi2-xTe3 thin films with x=0.03, 

0.14, and 0.29 was studied. Thin films with low surface roughness (~0.4 nm) were deposited 

on mica substrate. We found that Cr is an electron donor which reduces the carrier 

concentration of Bi2Te3. Magnetization of thin films increases with increasing Cr 

concentration. The ferromagnetism in CrxBi2-xTe3 appears at x=0.14 and 0.29, where hysteretic 

anomalous Hall effect and weak localization of magnetoconductance are observed. Our work 

 

Figure 5.4 (a) and (c) Arrott plot at various temperatures for CrxBi2-xTe3 with x= 0.14 and 

0.29 respectively. (b) and (d) Arrott-Noakes plot at various temperatures for CrxBi2-xTe3 

with x= 0.14 and 0.29 respectively, assuming β = 0.36 and γ = 1.386. 

 

 

 

 

 



www.manaraa.com

76 

 

is useful for achieving the gapped surface state of TIs with magnetic doping and their practical 

applications in magnetoelectric devices.  
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CHAPTER 6. HALL EFFECT SENSOR BASED ON TOPOLOGICAL 

INSULATORS  

After investigation on unique surface states of TI and magnetic element doped TI in 

the previous chapters, we begin to design and implement magnetic sensor based on TI thin 

film. Hall effect (HE) sensor is a widely used and highly sensitive magnetic sensor. Most HE 

sensor nowadays utilize high carrier mobility semiconductor such as GaAs. However, due to 

the high resistance of conventional semiconductor, a low energy consumption, high sensitivity 

Hall sensor are highly demanding. In this chapter, HE sensors based on high quality Mn doped 

Bi2Te3 topological insulator thin films have been systematically. Improvement of Hall 

sensitivity is found after doping magnetic element Mn into Bi2Te3. The sensors with low Mn 

concentrations, MnxBi2-xTe3, x =0.01 and 0.08 show linear behavior of Hall resistance with 

sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. 

For sensors with high Mn concentration (x=0.23), the Hall resistance with respect to magnetic 

field shows a hysteretic behavior. Moreover, its sensitivity shows almost 8 times as high as 

that of HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at 

very low magnetic field.  This increase of Hall sensitivity is caused by the occurrence of 

anomalous Hall effect (AHE) after ferromagnetic phase transition. Our work indicates that 

magnetic element doped topological insulator with AHE are good candidates for Hall effect 

sensors. 

6.1 Introduction 

Hall effect (HE) sensors are used widely in areas including position sensing, DC current 

transformers, and fuel level indicator due to their low costs, high reliability, free of contact 

bounce, and immune to environmental contaminants [92]. However, the low measuring 
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accuracy and sensitivity comparing to fluxgate magnetometers limit their applications. As a 

result, improving the sensitivity becomes a crucial problem for HE sensors. Key factors 

controlling sensitivity as well as the power consumption of HE sensors are carrier density and 

carrier mobility. Therefore, semiconductors such as GaAs and InAs with higher carrier 

mobility and lower carrier density than metals are often utilized [93]. In addition, anomalous 

Hall effect (AHE), which generates extra voltage across the current-carrying magnetic material 

due to spin-polarized electrons, is also used to make Hall sensors because of its improved Hall 

sensitivity.   

Recently, a new kind of semiconductor was discovered as topological insulators (TIs), 

which can possess an ultra-high carrier mobility at the surface, while keep insulating in bulk 

[15]. The reason of high carrier mobility is that TIs have spin-polarized massless Dirac surface 

state. Such state, protected by time reversal symmetry, suppresses the backscattering of charge 

carriers upon non-magnetic impurities. Moreover, Fermi level of TIs can be tuned to the 

surface Dirac point to reduce the density of charge carriers [31]. As a result, the ultrahigh 

mobility and low density of charge carriers enable TIs suitable materials for developing HE 

sensors. In addition, introducing magnetic impurities such as Fe [94], Cr [80, 95, 96], and Mn 

[97-100] into TIs can induce ferromagnetism and open a surface energy gap, which leads to 

interesting behaviors including magnetoelectric effect and quantized AHE [24]. As a result, 

TIs can also be considered as good candidates for AHE-based sensors by changing them into 

magnetic materials through incorporating magnetic impurities. 

Bi2Te3 has been found as one of 3D TI in the previous experiment work. The surface 

state of both pure Bi2Te3 and Sn doped Bi2Te3 were confirmed by ARPES and magneto-

transport measurements [4, 17]. Moreover, the AHE of Cr and Mn doped Bi2Te3 was reported 
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in previous researches [7, 11, 14]. However the application and properties of Mn doped Bi2Te3 

TI as Hall effect sensors are not well studied. In this work, we fabricate Hall effect sensors 

based on Mn-doped Bi2Te3 TI thin films. Both HE and AHE of sensors are systematically 

studied by varying Mn concentration. The influence of Mn concentration on sensitivity of 

MnxBi2-xTe3 HE sensors will be discussed.  

6.2 Experiment 

MnxBi2-xTe3 thin films with Mn concentration in range from 0 to 0.25 were grown by 

Perkin-Elmer 430 molecular beam epitaxy (MBE) system on mica substrate. When x > 0.25, 

the Mn doping tends to breakdown the epitaxial growth. Mica substrate was cleaved freshly 

before depositions. Source materials (Mn, Bi, and Te) with high purity were loaded in 

Knudsen effusion Cells. The base pressure during growth was kept as ~ 8×10-9 Torr. HE 

sensors were fabricated with two major steps. First, the as-grown thin films were fabricated 

into 1 mm wide Hall bar geometry [Fig 6.2(d)] by reactive-ion etching method. The 

composition analysis of sensors was carried out at the FEI Quanta FE-EDX. The Mn 

concentrations were confirmed and three different Mn doping levels in MnxBi2-xTe3 were 

selected as x = 0.01, 0.08 and 0.23. The crystal structure of sensors was studied by X-ray 

spectrometer (Siemens D500 XRD system). The topography of sensors was characterized by 

atomic force microscopy (AFM) in a tapping mode. The magneto-transport properties of 

sensors were characterized in Quantum Design physical properties measurement system.  
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6.3 Results and Discussion 

6.3.1 Crystal structure of MnxBi2-xTe3 Hall effect sensors 

Figure 6.1 shows the XRD profiles of MnxBi2-xTe3 HE sensors. Two sets of diffraction 

peaks are observed. One set of these diffraction peaks can be indexed as the [85] family plane 

of mica substrate; while (0015), (0018) and (0021) diffraction peaks are obtained from MnxBi2-

xTe3 thin films with rhombohedral structure. The visibility of diffraction peaks from mica 

substrate in all samples is due to the low thickness of thin films (~15 nm) in comparison with 

the penetration depth of X-rays. This diffraction pattern indicates that mica substrate is cleaved 

along its ab plane, while MnxBi2-xTe3 thin film is preferentially deposited along its c-axis. 

Moreover, except {001} family peaks, no extra peaks from MnxBi2-xTe3 thin films are observed 

in three doping levels, indicating that thin films being utilized to fabricate sensors are grown 

epitaxially and highly orientated. The c-axis lattice constant of MnxBi2-xTe3 thin films with x 

= 0.01, calculated from the (0018) diffraction peak in Figure 6.1 (a), is  30.54 Å. Comparing 

with un-doped Bi2Te3 (c = 28.84 Å) [97], the c lattice constant of Mn doped thin films 

increases. Moreover, with Mn concentration increasing to x = 0.23, the c lattice constant of 

MnxBi2-xTe3 increases to 30.61 Å. Since the ionic radius of Mn is smaller than Bi, the changes 

in lattice constant with doping Mn shows that Mn not only substitutes into the Bi site but also 

is trapped in the Van de Waals gap between quintuple layers [101]. In Figure 6.1 (c), the (0021) 

diffraction peak of MnxBi2-xTe3 with x = 0.23 becomes slightly broad compared with less doped 

samples. This may also results from the lattice distortions induced by Mn atoms. 
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6.3.2 Surface morphology of MnxBi2-xTe3 and CrxBi2-xTe3 Hall effect sensors 

Figure 6.2 shows AFM images of MnxBi2-xTe3 thin film HE sensors with x = 0.01, 0.08, 

and 0.23. With low Mn concentration x = 0.01 [Figure 6.2(a)], the sample shows terrace 

structure with the terrace width range from 200 nm to 500 nm. Moreover, the height of each 

terrace is ~ 1 nm, which is same as the thickness of one QL of MnxBi2-xTe3. These large surface 

terraces therefore indicate a layer-by-layer growth mechanism of Mn-doped Bi2Te3 on mica 

substrate.  

 

Figure 6.1 X-ray diffraction patterns of MnxBi2-xTe3 Hall effect sensor fabricated on mica 

substrate with (a) x = 0.01, (b) x = 0.08, and (c) x = 0.23, where diffraction peaks from mica 

substrate and MnxBi2-xTe3 thin film are indexed in blue and red, respectively. 
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With increasing Mn concentration to x = 0.08 and 0.23 [Figure 6.2(b) and (c)], terrace 

structure still exists. Moreover, streak lines were observed for all samples in the in-situ RHEED 

patterns. It is indicated that thin films with high Mn concentration retain epitaxy. Figure 6.2(a) 

– (c) further show that with increasing Mn concentration the width of surface terraces decrease. 

The reducing of surface terrace and slightly roughening of the sensor surface may result from 

the chemical disorder due to competition of Mn and Bi atoms at Bi site as well as the lattice 

distortions due to Mn atoms trapped in QL gaps. The root mean square (RMS) surface 

roughness of sensors shows low values for all samples. The highest RMS roughness of sensors 

 

Figure 6.2 (a), (b), and (c) Surface morphology of MnxBi2-xTe3 thin films with x= 0.01, x=0.08, 

and x=0.23, respectively, (d) Hall effect sensor fabricated with MnxBi2-xTe3 thin films, and 

geometry of Hall effect measurement. 
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is 0.2 nm when Mn concentration is x = 0.23, which is much smaller than previous report of 

Cr doped Bi2Te3. The low roughness and high quality of MnxBi2-xTe3 thin films consolidates 

the following results of electric transport properties of sensors.  

6.3.3 Electric transport properties of MnxBi2-xTe3 and CrxBi2-xTe3 Hall effect sensors 

The transport responses of MnxBi2-xTe3 HE sensors with (x = 0.01, 0.08, 0.23) are 

shown in Figure 6.3. Hall resistance for all three sensors with different Mn concentration shows 

tendency of decrease with increasing magnetic field. The negative slope of Hall resistance 

indicates the Mn doped Bi2Te3 sensors remain n-type. The carrier density of sensors at 30 K is 

calculated by using: 𝑛 = (|𝑅H|𝑒)−1, where 𝑅H is the Hall coefficient and 𝑒 is the electron charge. 

The calculated carrier density decreases from 9.5×1019 cm-3 to 7.5×1019 cm-3 at 30 K as Mn 

concentration increases from x = 0.01 to 0.23, reflecting  the downward motion of Fermi level 

(𝐸F). The relative large carrier density of sensors compared with ideal TIs indicates that the 

sensors are heavily donor-doped. As a result, 𝐸F is far above the surface Dirac point. Such band 

structure is consistent with other TIs such as SbxBi2-xTe3 [18]. The carrier mobility of MnxBi2-

xTe3 sensor was calculated by using: μ =  
𝜎𝑥𝑥

𝑛𝑒⁄  , where 𝜎𝑥𝑥 is the longitudinal conductivity. 

The mobility value calculated at 30 K varies with changing Mn concentration. At low doping 

level (x = 0.01) the carrier mobility is 473.5 cm2/Vs. The carrier mobility decreases to 72.4 

cm2/Vs in highly doped sensors with x = 0.23. The lower carrier mobility in MnxBi2-xTe3 

sensors than the reported value in pure Bi2Te3 (5800 cm2/Vs) [83] indicates that the 

incorporation of Mn destroys the massless surface state of topological insulators. We will show 

in the following that AHE is also induced in heavily doped MnxBi2-xTe3. 

At low doping level with x = 0.01 [Figure 6.3(a)], the sensor shows ordinary HE. The 

overlap of straight lines of Hall resistance at different temperatures indicates the temperature 
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independence of HE for this composition. For the sensor with Mn concentration x = 0.23 

[Figure 6.3(c)], temperature dependence of Hall resistance becomes more obvious than others, 

and AHE occurs during cooling. At high temperature, Hall resistance shows linear dependence 

on magnetic field same as previous sample. However, the Hall resistance exhibits hysteresis 

when the temperature is lower than 12.5 K, indicating the occurrence of a ferromagnetic phase 

transition [102]. Simultaneously, the Hall resistance of sensors under magnetic field of – 0.2 T 

increases. Moreover, the hysteresis in Hall resistance increases with further cooling, being 

similar to the temperature dependence of ferromagnetic materials [103]. The corresponding 

coercive field Hc as a function of temperature is shown in Figure 6.3(d). Hc abruptly increase 

around 12.5 K indicating that the ferromagnetic transition temperature Tc of sensors is near 

12.5 K, which is in the same temperature range as previous researches [99, 100]. The 

temperature dependence of longitudinal resistance (  𝑅 𝑅30K⁄ ) of sensors at various Mn 

concentrations is further depicted in the inset of Figure 6.3(d). Typical metallic behavior can 

be observed for x = 0.01. But the resistance curve of sensor with x = 0.23 shows a dip around 

15 K, similar to its curie temperature Tc. With the temperature lowering than 15 K, the sensor 

shows similar resistance behavior as semiconductors. For x = 0.08, a broad dip could be 

observed in R/R30K [inset Figure 6.3(d)] at about 10 K. Below 10 K, the Hall resistance [Figure 

6.3(b)] starts to show a nonlinear behavior. However, there is no ferromagnetic phase transition 

since no hysteresis behavior is observed. This indicates that Mn concentration is not sufficient 

to induce the long-range-ordered ferromagnetic transition. 
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6.3.4 The effect of temperature and Mn concentration on sensitivity of MnxBi2-xTe3 Hall 

effect sensors 

Sensitivity is the most important figure of merit for Hall sensor. For the linear behavior 

of ordinary HE, Hall resistivity of sensors is expressed as  ρ𝑥𝑦 = 𝑅H𝐻.  For AHE, Hall 

resistance is described as ρ𝑥𝑦 = 𝑅H𝐻 + 𝑅AH(𝑀), which is composed of both ordinary Hall 

resistivity 𝑅H𝐻 and anomalous Hall resistivity 𝑅AH(𝑀). The sensitivity of HE sensors can be 

defined as 𝑆 = 𝑑𝜌𝑥𝑦 𝑑𝐻⁄ . Based on the magneto-transport properties shown in Figure 6.3, 

 
Figure 6.3 Temperature dependence of Hall resistance curves under low magnetic field for 

MnxBi2-xTe3 HE sensor with  (a) x=0.01, (b) x = 0.08, and (c) x=0.23. (d) Temperature 

dependence of coercive field for MnxBi2-xTe3 HE sensor with x=0.23. Inset shows the 

temperature dependence of longitudinal resistance (  𝑅 𝑅30K⁄ ) of sensors at various Mn 

concentrations. 
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sensitivity of sensors close to 0 T is calculated using the above equation for MnxBi2-xTe3 

sensors. 

Figure 6.4 shows sensitivity of sensors near zero magnetic field as a function of 

temperature and Mn concentration. Sensitivity of sensors with Mn concentration x = 0.01 and 

0.08 is about 5 Ω/T, being a nearly flat line at various temperatures.  For sensors with Mn 

concentration x = 0.23, sensitivity increases to 43 Ω/T when the temperature is lower than Tc. 

And this sensitivity is higher than most ultrathin metals such as Ni and Co [104]. Moreover, 

Figure 6.3 and Figure 6.4 show that the increase in sensitivity of sensors is due to AHE caused 

by the occurrence of ferromagnetic phase transition in strongly Mn doped sensors. Figure 6.4 

further shows that highest sensitivity can be obtained around 7.5K. The relative low sensitivity 

together with high carrier density in these sensors implies that the bulk carriers in TI 

significantly contribute to Hall resistance [18]. The error due to the hysteresis loop of Hall 

resistance reduces the resolution of sensors. For sensors with x = 0.23, the error of the Hall 

sensor, i.e. 2Hc, ranges from 28 mT to 0.15 mT, which is comparable to that of commercial 

product. 

Although the hysteretic behaviors associated with AHE in the sensors is often 

undesirable for applications, it is possible to further increase the sensitivity and reduce the 

hysteresis by adjusting the concentration of Mn [12]. Though the sensors show improved 

sensitivity at lower temperatures, it is desirable to have further improvements for higher 

temperature applications. Nevertheless, this low temperature Hall effect sensor can be used as 

cryogenic magnetic field measurements, research of superconducting materials and low 

temperature magnetometry measurements. The possible room temperature application could 

be facilitated by applying the high frequency excitations to the sensors [20]. 
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6.4 Conclusion 

In summary, a detailed study on the influence of Mn concentration on transport 

response and sensitivity of MnxBi2-xTe3 HE sensors are presented. Surface and crystal 

characterizations show that the sensors are fabricated with high quality MnxBi2-xTe3 thin films. 

For heavily Mn doped sensors with x = 0.23, AHE is observed when cooling to 12.5 K. As a 

result, an improvement on Hall sensitivity is found. The Hall sensitivity of sensors with 

MnxBi2-xTe3 x = 0.23 is 43 Ω/T, about 8 times higher than that of sensors with x = 0.08 and 

0.01. Our work will be helpful to design TI based low temperature Hall sensors. 

  

 

Figure 6.4 The effect of temperature and Mn concentration on Hall sensitivity of  MnxBi2-xTe3 HE 

sensor with x = 0.01, 0.08, and 0.23. 

 

 

 

 

Figure 0.10 The effect of temperature and Mn concentration on Hall sensitivity of  MnxBi2-xTe3 

HE sensor with x = 0.01, 0.08, and 0.23. 
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CHAPTER 7. ANOMALOUS HALL EFFECT SENSOR BASED ON 

TOPOLOGICAL INSULATOR  

In the previous chapter, Mn doped TI thin film has been proved to be a promising 

candidate for Hall effect sensor. However, the sensitivity remains lower than the commercial 

ones. Nevertheless, it provides an important clue that the induced ferromagnetic TI by doping 

Mn in Bi2Te3 can increasing the Hall sensitivity due to anomalous Hall effect (AHE). This 

discovery broadens the family of Hall sensors. In this chapter, AHE sensors based on Cr doped 

Bi2Te3 thin films are studied with two thicknesses (15 nm and 65 nm) because their more stable 

ferromagnetic property. It is found in both cases that ultrahigh Hall sensitivity can be obtained 

in Cr doped Bi2Te3. Hall sensitivity reaches 1666 Ω/T in sensor with 15nm TI thin film which 

is higher than that of the conventional semiconductor Hall effect sensor. The anomalous Hall 

effect of 65 nm sensors is even stronger, which causes the sensitivity increasing to 2620 Ω/T. 

Moreover, after comparing Cr doped Bi2Te3 with previously studied Mn doped Bi2Te3 TI Hall 

sensor, the sensitivity of present AHE sensor shows about 60 times higher in 65 nm sensors. 

The implementation of AHE sensors based on magnetic doped TI thin film indicates that the 

TIs are good candidates for ultra-sensitive AHE sensors. 

7.1 Introduction 

Since the discovery of the Hall effect (HE), its scientific meaning as well as practical 

application has always been an interesting topic to researchers. Most commercial used Hall 

sensor nowadays are semiconductor material based on it low carrier density and high carrier 

mobility such as GaAs [93]. However, the high resistance and low response frequency of 

semiconductor limit its application in industry [92].  Besides using Lorenz force causing charge 

accumulation to achieve Hall in semiconductor, there is a emergent developing field known as 
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spin-dependent HE including quantum Hall effect (QHE), anomalous Hall effect (AHE) and 

spin Hall effect (SHE) [3]. Ultrahigh AHE sensitivity has been reported in different metallic 

heterostructure and metal-oxide interfaces [105-107]. Already achieved sensitivity of the 

AHE-based devices exceeds 1000 Ω/T, which surpasses the sensitivity of semiconducting Hall 

sensors [105]. It is believed that the AHE is an alternative approach to largely increase the Hall 

sensitivity and response frequency while keeping the low power consumption.  

Recently, quantum AHE has been experiment observed in Topological insulator which 

broadens the horizon of the AHE sensor. TI is a kind of quantum material which possesses an 

ultra-high carrier mobility at surface while insulating in the bulk because of spin-polarized 

massless Dirac surface state [95]. Moreover, after introducing magnetic element into TI, 

quantum anomalous Hall effect (QAHE) appears in ferromagnetic TI system because the 

suppression of one spin channel [24, 108, 109]. The discovery of TIs broadens spin-dependent 

electronics and devices[110, 111]. Bi2Te3, Bi2Se3, Sb2Te3 were reported as 3D TI which 

confirmed by ARPES and magneto-transport measurements [67, 102]. It has been reported that 

in Mn doped TI, the Hall sensitivity increase 8 times caused by QAHE [62]. However, the 

sensitivity of Mn doped TI AHE sensor is much lower than other AHE sensor reported. 

Previously work on Cr doped Bi2Te3 shows that Cr introduces much stronger magnetization in 

the system than Mn indicating that the sensitivity of AHE sensor based on it will be very high.  

In order to seek a much higher sensitivity AHE senor based on TI, in this work, we fabricate 

Hall effect sensors based on Cr-doped Bi2Te3 TI thin films. The sensitivity, Hall resistivity, 

coercivity, electrical property, and temperature dependence of sensors will be studied.  
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7.2 Experiment 

CrxBi2-xTe3 thin films were deposited on preheated mica substrate by Perkin-Elmer 430 

molecular beam epitaxy. Mica substrate was heated to 235oC and wait until stable. Two sets 

of samples with the same atom fraction (x) of 0.14 have been grown with 30min and 2hour 

growth time. High purity source materials (Cr, Bi and Te) was placed in the effusion Cells and 

heated during the growth. The flux ratio of Te per Bi was set to approximately 10 in the growth 

chamber to maintained Te-rich environment in order to reduce the Te vacancies. Cr 

concentration was controlled by adjusting the cell temperature. Crystalline structure of the as-

grow thin films were characterized by X-ray Diffractometer (Siemens D500 XRD) at room 

temperature. Atomic force microscopy (AFM) was used to demonstrate the surface 

morphology and roughness of sensors. The concentration of Cr concentration was determined 

by FEI Quanta FE-EDX. Hall bar geometry was defined by reactive-ion etching (RIE) method 

with Ar gas and measured by a Quantum Design Physical Property Measurement System 

(PPMS). 

7.3 Results and Discussion 

7.3.1 Surface morphology and crystal structure of Cr0.14Bi1.86Te3 Hall effect sensors 

Figure 7.1(a) and (b) shows the surface morphology of CrxBi2-xTe3 topological 

insulator thin film for the sensor with different growth duration. The AFM image shows 

triangle terrace-like surface for both samples indicating a layer-by-layer epitaxy mechanism. 

However, different terrace width can be detected between two samples. The terrace width of 

sensor with 2hour growth time is about 300nm which is about 10 times larger than 30min 

growth time. The thickness of the two samples can also be obtained by scratching the surface 
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and scanning by AFM. The results are shown in Figure 7.1(c) and (d). The dark regions indicate 

the film been removed and the step in the curve shows the thickness is approximate 15 nm and 

65 nm for a 30min and 2 hour sample respectively. The growth rate then can be calculated to 

be 0.52nm/min. The RMS roughness for both samples is under 1nm indicating the good quality 

of sample for device applications.  

 

The crystal structure analysis was shown in Figure 7.1(e) and (f). Two sets of 

diffraction peaks are observed for both samples. One set of these diffraction peaks can be 

 

Figure 7.1 Characterization of Cr0.14Bi1.86Te3 based sensors with different deposition 

duration. (a) and (b) surface morphology; (c) and (d) thickness; (e) and (f) X-ray diffraction 

patterns of sensors with 30min and 2hour growth, respectively. 
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indexed as mica substrate; while (0015), (0018) and (0021) diffraction peaks are obtained from 

Cr0.14Bi1.86Te3 thin films with rhombohedral structure. Since the low thickness of thin films, 

the X-ray penetrates the thin film and detected both mica substrate and sample. It is noticed 

that the intensity of thicker sample is higher than that of the thinner sample. No extra peak is 

observed in both samples indicating the thin film is highly orientated. To summary, all the 

characterization results demonstrate that the Cr0.14Bi1.86Te3 thin film with thickness of 15nm 

and 65nm are in high quality and suitable candidate for HE sensors.  

7.3.2 Magneto-transport properties of Cr0.14Bi1.86Te3 Hall effect sensors 

After characterizing thin films, HE sensors are fabricated and magneto-transport 

measurements are carried out. Figure 7.2 shows Hall resistivity results at different temperatures 

from 20K to 2.5K. At 20K, the Hall resistivity (𝜌xy) varies between sensors with different 

thicknesses. The 15nm thin film sensor shows linear behavior of 𝜌xy and almost temperature 

independence. Whereas the 65nm thin film sensor shows nonlinear behavior in 𝜌xy  and a 

positive slope of 𝜌xy regarding to temperature, indicating the sample has similar HE as a p-

type semiconductor and it is difficult to observe QAHE in present samples. The appearance of 

nonlinearity in 𝜌xy at large magnetic field indicates Cr appears to substitute in Bi site and a net 

magnetization is generated in the thick sample at this temperature.  

With decreasing the testing temperature to 10K [Figure 7.2(b)], both 15nm and 65nm 

sample show hysteresis behavior with small coercivity which indicates that AHE happens at 

this temperature due to a paramagnetic to ferromagnetic phase transition [77]. As can be 

observed that 𝜌xy saturated at a certain magnetic field. The saturation Hall resistivity (𝜌xy
𝑠 ) of 
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65nm sample is much larger than that of 15nm sample. The Hall resistivity shows more 

obvious hysteresis behavior when temperature drops further down to 7.5K and 2.5K.  

 

At lowest testing temperature in present work (T = 2.5K), the hysteresis behavior with 

relative large coecivity can be observed both in thick and thin sensors[Figure 7.2 (d)]. For AHE, 

Hall resistance is described as ρ𝑥𝑦 = 𝑅H𝐻 + 𝑅AH(𝑀), which is composed of both ordinary 

 

Figure 7.2 Temperature dependence of Hall resistance curves for CrxBi2-xTe3 HE sensor with 

different thickness.  (a) T = 20K, (b) T = 10K, (c) T = 7.5K, and (d) T= 2.5K. (e) temperature 

dependence of saturation field for CrxBi2-xTe3 HE sensor and (f) saturation Hall resistivity at 

zero magnetic field. The dashed lines in (e) and (f) are guides to the eye. 
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Hall resistivity  𝑅H𝐻  and anomalous Hall resistivity 𝑅AH(𝑀) . Here, 𝑅AH(𝑀)  takes the 

dominant role in Hall resistivity. Since the magnetization of sensors behaves hysterically, the 

𝜌xy also shows the hysteresis behavior. Obviously, in all testing temperature range in this work, 

the saturation Hall resistivity (𝜌xy
𝑠 ) of 65nm sensor is much larger than that of the 15nm sample. 

This may result from the magnetic anisotropy of the thin sample is different from that of the 

thick samples [107].This different can be further explained by comparing 𝜌xy
𝑠  of these two 

sensors at different temperature.  

Figure 7.2(f) shows the temperature dependence saturation Hall resistivity (𝜌xy
𝑠 ). Both 

sensors with thinner and thicker film show a rapid decrease when near 8K indicating the 

ferromagnetic phase transition happened around this temperature (Tc), which generate 

magnetization after the phase transition contribute to AHE effect in Cr0.14Bi1.86Te3 sensors [77]. 

The highest saturation Hall resistivity in 15nm sensor is about 27 μΩ•cm at 2.5K which is 

larger than that of Mn doped Bi2Te3 AHE sensor. Moreover, the largest value reach to 225 

μΩ•cm in 65nm sensor. The large difference between the 15nm sensor and 65nm sensor 

demonstrate that a magnetic easy axis in the plane when thickness is about 15nm whereas a 

perpendicular magnetic anisotropy (PMA) has been obtained when the Cr0.14Bi1.86Te3 sensor 

thickness reach 65nm which is the similar to the AHE senor with CoFeB and PtFe thin film 

[55]. 

Another crucial characteristic of AHE sensor is the saturation field (Hs). Figure 7.2(e) 

is the summary of Hs as temperature varying from 2.5K to 30K. Both of the two samples show 

a decrease tendency of Hs when temperature increase which is similar to typical ferromagnetic 

materials [103]. An abrupt change of Hs can be observed at about 8K for both samples, 

consisting with the curie temperature (Tc) shown in 𝜌xy
𝑠 . The lowest Hs for both thin film 
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sensors is below 10mT, which exhibit low switching field superiority for the device application 

[55]. The high saturation Hall resistivity and low saturation field imply the ultrahigh sensitivity 

in CrxBi2-xTe3 based sensor. 

 

The carrier density can be extracted from the Hall measurement by using: 𝑛 = (|𝑅H|𝑒)−1, 

where 𝑅H is the Hall coefficient and 𝑒 is the electron charge. Figure 7.3 (a) shows temperature 

dependent carrier density. As temperature increases the carrier density also increasing. The 

thinner sample has higher carrier density of than the thicker sample because n is inverse 

proportional to 𝜌xy. Since 𝜌xy of thin sample is smaller than that of the thick sample, n is larger. 

The lowest carrier density can achieve 0.55×1018 cm-3. The carrier mobility [Figure 7.3 (b)] of 

Cr0.14Bi1.86Te3 TI sensor is calculated by using: μ =  
𝜎𝑥𝑥

𝑛𝑒⁄  , where 𝜎𝑥𝑥  is the longitudinal 

 

Figure 7.3 Carrier density(a) and carrier mobility(b) of TI AHE sensor with 15 nm and 65 

nm thickness CrxBi2-xTe3 thin film. 
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conductivity. The mobility decrease from 0.35 m2/Vs to 0.02 m2/Vs with temperature increase 

from 2.5K to 30K for 65nm sample. For the 15nm sample, similar trend can be observed with 

lower value of carrier mobility, ranging from 0.16 to 0.006 m2/Vs. The highest carrier mobility 

are comparable to pure Bi2Te3 in which the effective mass of electron is almost zero[83]. The 

relative low carrier density and high carrier mobility are signs of high Hall sensitivity. 

7.3.3 The effect of temperature on sensitivity of CrxBi2-xTe3 Hall effect sensors  

The most important characteristic parameters of HE sensor is Hall sensitivity (S), which 

is the figure of merit for Hall sensor. The sensitivity of AHE sensors can be defined as initial 

Hall slope S = 𝑑𝜌𝑥𝑦 𝑑𝐻⁄ . Based on the magneto-transport properties shown in Figure 7.2, Hall 

sensitivity of Cr0.14Bi1.86Te3 sensors with different thickness can be calculated. Figure 7.4 

shows sensitivity of sensors within saturation field as a function of temperature and thickness. 

Inset of Figure 7.4 shows the schematic picture of Hall sensor under testing.  

It can be observed that with temperature decreasing the sensitivity tends to increase. 

Below the temperature (T = 8K), sensitivity suddenly jumped to magnitude higher than that of 

the higher temperatures. This is because doping Cr introduces magnetization after 

ferromagnetic phase transition causing AHE. The thinner TI sensor (15nm) shows the highest 

sensitivity S = 1666 Ω/T at T = 2.5K, surpassing the highest sensitivity of semiconductor HE 

sensor (1000 Ω/T) [112]. At T = 2.5K, the sensitivity reached 2620 Ω/T in 65nm sensor which 

is twice higher than 15nm sample. Moreover, Fig. 7.4 also compares the sensitivity between 

Cr doped Bi2Te3 and Mn doped Bi2Te3, of which the sensitivity is in the range 5 Ω/T - 43 Ω/T 

[62]. The sensitivity of 65nm Cr0.14Bi1.86Te3 AHE sensor is about 60 times higher than that of 

Mn doped Bi2Te3 AHE sensor, which may due to the more stable ferromagnetism and 

insulation of Cr0.14Bi1.86Te3. It should be mentioned that in the temperature range from 2.5K to 
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10K, sensitivity keep higher than 2000 Ω/T. This low temperature AHE sensor can be used as 

cryogenic magnetic field measurements, research of superconducting materials and low 

temperature magnetometry measurements.   

 

 

7.4 Conclusion 

To summarize, we studied AHE sensor based on CrxBi2-xTe3 topological insulator with 

thickness of 15 nm and 65 nm. It is found that the sensor remains high sensitivity in both 

thicknesses. The giant sensitivity is found S=2620 Ω/T at 2.5K in CrxBi2-xTe3 sensor with 

thickness of 65 nm which is more than twice the sensitivity of semiconductor HE sensor. The 

high sensitivity results from Cr induced AHE in TI thin films. The CrxBi2-xTe3 sensors show 

high carrier mobility, which enables the application of low power consumption magnetic 

 

Figure 7.4 Temperature dependence of sensitivity for CrxBi2-xTe3 AHE sensor with 

different thickness. Inset shows the schematic picture of HE sensor under testing. The green 

curve shows the topological insulator thin film Mn doped Bi2Te3 with similar testing 

condition. 
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sensors. Moreover, both saturation Hall resistivity and sensitivity show dependence on 

thickness, which indicates the variation of magnetic anisotropy with changing thickness in 

sensors. Our work therefore enlightens the design of low-energy consumption and high 

sensitivity Hall devices such as magnetic sensor and memory devices.  
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CHAPTER 8. MAGNETIC SENSOR BASED ON MAGNETOELECTRIC 

EFFECT IN COBALT FERRITE AND BARIUM TITANATE COMPOSITE 

Multiferroic materials exhibit magnetoelectric coupling and promise new device 

applications including magnetic sensors, generators, and filters. An effective method for 

developing magnetoelectric (ME) materials with enhanced ME effect is achieved by the 

coupling through the interfacial strain between piezoelectric and magnetostrictive materials. 

In this study, the electrical and magnetic properties of Ga doped magnetoelectric CoGaxFe2-

xO4/BaTiO3 composite are studied systematically. It is found that Ga doping improves the 

sensitivity of magnetoelastic response and stabilizes the magnetic phase of the composites. 

More importantly, Ga doping reduces the electrical conductivity of composite, as well as the 

dielectric loss. An enhancement of the electrostrain with doping Ga is also observed. 

Quantitative estimation indicates that magnetoelectric coupling is enhanced for Ga-doped 

CoGaxFe2-xO4/BaTiO3 composites compared to a previous work with Ga-doping. Thus, the 

present is beneficial to the practical application of composite CoFe2O4/BaTiO3-based 

multiferroic materials. 

8.1 Introduction 

Multifunctional devices based on magnetoelectric phenomenon require the coexistence 

of ferroelectricity and ferromagnetism, in addition to a strong coupling between the two ferroic 

orders [38]. The ferroelectric/ferromagnetic composites enable the development of 

magnetoelectric (ME) materials with enhanced ME effect. This can be achieved by indirect 

coupling through the interfacial strain between the ferroelectric and ferromagnetic materials 

[49-51]. Such strain mediated ME effect can be used to generate electric polarization in the 

ferroelectric component of the composite due to applied magnetic field in the ferromagnetic 
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component or magnetization in the ferromagnetic component due to applied electric field in 

the ferromagnetic component. The property tensor dE/dH can be given by the product of the 

proportionality tensor of the phases [113]: 

α𝑖𝑗 =
𝑑𝜆𝑖𝑗

𝑑𝐻𝑗
∗

𝑑𝐸𝑖

𝑑𝜆𝑖𝑗
 

whereα𝑖𝑗  is defined as linear magnetoelectric coefficient, dλ/dH is the magnetostriction 

derivative and dE/dλ is the change in the electric field with strain.  Because the ME effect in 

composites is extrinsic, it depends on the microstructure of the composite and the strain 

mediated coupling across the interface of the ferromagnetic-ferroelectric components. Studies 

have been done involving combinations of different magnetostrictive and piezoelectric 

materials such as variety of ferrites and titanites [48, 114-119]. The inevitable drawback in this 

application is the leakage current due to the low resistivity of the ferromagnetic phase 

[115]. There is therefore need to develop alternative magnetoelectric materials with low 

leakage current. In this study, the results of an investigation on composites of Ga-substituted 

cobalt ferrite (CoGaxFe2-xO4) and BaTiO3 are presented which also shows potentials for lower 

leakage current.  

8.2 Experiment 

CoGaxFe2-xO4 (x = 0 - 0.3) was prepared by the conventional two-phase solid-state 

reaction using the constituent oxide powders. 50 wt.% of CoGaxFe2-xO4 was mixed with 50 

wt.% of an analytical reagent grade BaTiO3 powder. To ensure homogenous mixture, the 

chemicals were milled for 6 h, calcined twice in the air at 1273 K for 4 hrs and sintered at 1473 

K for 6 hrs. The sintered pellets were of 15 mm diameter. 
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To study the crystal structure and purity of the composite samples, room temperature 

X-ray diffraction (XRD) was performed using Cu K radiation. The microstructure and 

composition of the samples were studied by scanning electron microscopy (SEM) and energy 

dispersive X-ray spectroscopy (EDS), respectively. Fractured sample surfaces were used for 

the SEM analysis. Magnetic properties were studied in a vibrating sample magnetometer 

(VSM) with maximum applied magnetic field of 4 kOe. Magnetostriction was measured, in an 

electromagnet, with magnetic field applied in the direction of strain measurement using strain 

gauges attached to the samples. Ferroelectric workstation was used to measure the polarization 

as a function of the electric field and electric field induced strain.  

8.3 Results and Discussion 

The microstructure and crystal structures are similar in CoGaxFe2-xO4/BaTiO3 (x = 0 - 

0.3). The electron images and XRD patterns in Figure 8.1 are for the composition at x = 0.3. 

The backscattered electron micrographs [Figure 8.1(a)] indicate that the samples have high 

density. The light and dark contrasts represent the BaTiO3 (BT) and CoGaxFe2-xO4 (Ga0.3CFO) 

phases, respectively. The secondary electron modal micrograph of the sample [Figure 8.1(b)] 

shows that the BT and Ga0.3CFO phases are distributed evenly with the Ga0.3CFO forming 

some angular morphology clusters. BT appear as smaller particles with irregular shapes.  

The corresponding EDS elemental maps are shown in Figure 8.1(c) and (d). The light 

area in Figure 8.1(c) and the dark area in Figure 8.1(d) represent Ba and Ga respectively. These 

maps indicate Ga is doped into the CFO phases rather than BT phase in the composite. The 

XRD pattern in Figure 8.1(e) indexed with BaTiO3 and CoGaxFe2-xO4 using PDF cards shows 

that the composite consists of tetragonal BaTiO3 phase (indexed in red fonts) and spinel 

CoGaxFe2-xO4 phase (indexed in blue fonts). And, no secondary phases are form. 
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The magnetic hysteresis loops of the CoGaxFe2-xO4/BaTiO3 composite (x = 0, 0.1, 0.2, 

0.3), showing shapes typical of soft magnetic material are presented in Figure 8.2(a). 

 

Figure 8.1 Characterization of samples used for ME sensor. (a), (b), (c), and (d) SEM image 

and (e) XRD pattern of CoGaxFe2-xO4/BaTiO3 (x = 0.3) and EDS images. 
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The saturation magnetization, remanence and coercivity are shown in Figure 8.2(b), 

2(c), and 2(d) respectively. Magnetization at maximum applied field of 4 kOe increases with 

Ga concentration in CoGaxFe2-xO4 up to x = 0.2 and decreases slightly at x = 0.3. Similar 

observation was previously reported in which it was stated that  Ga3+ has A-site preference 

[120, 121]. Such may also results in cobalt ions being displaced into the B-sites. Since the net 

magnetic moment in spinel ferrites is obtained by 𝑚 = ∑𝑚𝐵−𝑠𝑖𝑡𝑒𝑠 − ∑𝑚𝐴−𝑠𝑖𝑡𝑒𝑠, substituting 

for Fe3+ on the A-sites and displacing more Co2+ into the B-sites would increase magnetic  

moment. ∑𝑚𝐵−𝑠𝑖𝑡𝑒𝑠 and ∑𝑚𝐴−𝑠𝑖𝑡𝑒𝑠 represent the net magnetic moment of the B-sites and A-

 

 Figure 8.2 Magnetic properties of CoGaxFe2-xO4/BaTiO3 (x = 0, 0.1, 0.2 ,0.3) at room 

temperature: (a) magnetization curve, (b) saturation magnetization (Ms), (c) remnant 

magnetization (Mr), and (d) magnetic coercive field. 
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sites cations, respectively. The slight decrease at x = 0.3 may indicate the onset of some Ga 

ions being substituted into the B-sites as its concentration increases.   

The remnant magnetization, Mr [Figure 8.2(c)] and coercive field (Hc) in Figure 8.2(d) 

initially increase from x = 0 to x = 0.1 but afterwards decreases. This may be a consequence 

of changes in magnetocrystalline anisotropy due to Ga3+ in the spinel phase and grain size [122, 

123]. It is known that the magnetization process includes both domain wall motion and domain 

rotation. The small grains tend to result in low density of domain walls. Therefore, the domain 

rotation becomes dominant factor during magnetization rather than the domain wall motion. 

Since the domain rotation consumes more energy than the domain wall motion, the coercive 

field (Hc) increases. The trend observed here has been reported for both coercive field and 

magnetocrystalline anisotropy in Zn-substituted CoFe2O4 [124].  

In Figure 8.3(a), similar trend in magnetostriction as a function of applied magnetic 

field is obtained for all composites. Generally, magnetostriction decreases in the Ga-containing 

composites, indicating the effect of Ga-substitution on the magnetostrictive properties of spinel 

cobalt ferrite phase. This decrease is related to the weakening of the exchange coupling with 

substitution of non-magnetic Ga3+ which would affect magnetostriction. A similar observation 

was reported in magnetostrictive properties of Ga-substituted cobalt ferrite at 300 K [120]. The 

observation that the magnetostriction plots do not saturate as would be obtained in only 

CoGaxFe2-xO4 phase indicates the coupling of the strains on the BT and CoGaxFe2-xO4 phases.  
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The strain derivative (dλ/dH), in Figure 8.3(b) is an important parameter which 

demonstrates the sensitivity of magnetoelastic response to an external field. The maximum 

strain derivative (dλ/dH)max in Figure 8.3(c) shows an increase with Ga concentration in 

CoGaxFe2-xO4/BaTiO3 composite. The highest (dλ/dH)max value is found at x = 0.3  in this 

study which is higher than the previous reported  pure CoFe2O4 [121] as well as some other 

 

 Figure 8.3 Magnetostriction (λ) vs. magnetic field (H) curves for CoGaxFe2-xO4/BaTiO3 (x 

= 0, 0.1, 0.2, 0.3). (b) dλ/dH as a function of magnetic field (H). (c) The maximum 

sensitivity of magnetostriction with respect to different Ga concentrations. 
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ME composites [125]. This high strain derivative indicates possible improvement of the ME 

effect in CFO/BT composite. 

The ferroelectric properties of the composites are shown in Figure 8.4. The polarization 

vs. electric field (P-E) loops obtained at room temperature, are shown in Figure 8.4(a). It can 

be seen that there is no saturation polarization as typically seen in P-E loops of pure BaTiO3. 

This indicates that electrical conductivity increase with increasing the electric field, i.e the 

existence of leakage current. However, the electric hysteresis loops become slanted and less 

coercive with increasing Ga concentration in the composites, suggesting the decrease of 

leakage current with Ga doping. Both the remnant polarization (Pr) and coercive field (Ec) get 

smaller as Ga concentration increases in the (CoGaxFe2-xO4)/BaTiO3 composite, as show in 

Figure 8.4(b). This indicates a deviation from a typical ferroelectric behavior of BT to one in 

which it is coupled to the CFO phase. This deviation in the long range order behavior of electric 

dipoles is due to the ferrite particles with a spinel structure being incorporated into BaTiO3 

perovskite structure.  

The improvement of the leakage current could also be observed from the plot of the 

loss tangent (tan δ) as a function of temperature shown in Figure 8.4(c). The loss tangent of 

the composites was measured at 10 kHz. It can be seen that the tan δ value is lower in 

Ga0.3CFO/BT than CFO/BT at all temperatures and is about one-half less at 160 ̊C. It is likely 

that the increase Ga concentration in the composites reduces defects such as oxygen vacancies 

in the BaTiO3 ferroelectric phase, which is responsible for the decrease in electrical 

conductivity as Ga content increases.  The unipolar electric-field-induced strain S(E) curves of 

the composite are shown in Figure 8.4(d). It can be found that the electrostrain of (CoGaxFe2-

xO4)/BaTiO3 with x = 0.3 is higher than that of x = 0.2. Moreover, the normalized strain 𝑑33
∗  
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can be calculated from the S(E) curve by Smax/Emax ratio in the unipolar strain curve. The 

biggest 𝑑33
∗  is about 514 pm V-1 in present study when x = 0.3. As a result, the electrostrain of 

the composites also improves with Ga doping.  

 

           Considering the product of the proportionality tensor of the phases described in 

introduction, Van den Boomgaard established a model which can be used to estimate the ME 

voltage coefficient, assuming comparable Young’s moduli for both CoFe2O4 and BaTiO3.  The 

dielectric constant of BaTiO3 is much larger than CoFe2O4 [85].  

The ME voltage coefficient of the composite given by this model is (𝑑𝐸/𝑑𝐻)𝑐𝑜𝑚𝑝 =

𝑚𝑣(𝑑𝜆/𝑑𝐻)𝐶𝐹𝑂 ∗ (1 − 𝑚𝑣)(𝑑𝐸/𝑑𝜆)𝐵𝑇 . We used the sample with x = 0.3 (Ga0.3CFO-BT), 

 

 Figure 8.4 (a) Ferroelectric properties of CoGaxFe2-xO4/BaTiO3 composites (x = 0, 0.1, 

0.2, 0.3). (b) Remnant polarization and electric coercive field with different Ga 

concentration in the ferromagnetic phase. (c) Loss tangent as a function of temperature at 

10 kHz frequency. (d) The unipolar electric-field-induced strain S(E) curves. 
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in which we had the maximum optimization, to estimate the coefficient. From the 

magnetostrictive derivative (Fig 8.3) and electrical electric field-induced strain curve (Fig. 

8.4), we can get  (𝑑𝜆/𝑑𝐻)𝐺𝑎0.3𝐶𝐹𝑂 = 2.6 × 10−9𝑚/𝐴 and (𝑑𝐸/𝑑𝜆)𝐵𝑇 = 1.95 𝑉/𝑝𝑚. Using 

0.5 volume fraction of BT and considering the uniform distribution of the phases as previously 

shown in the microstructure presented in Fig 8.1, we can obtain the ME voltage coefficient of 

α = 1.26 (m/A)(V/m), which is larger than previous reported for CFO/BT α = 1.19 (m/A)(V/m) 

[113]. Therefore, this work demonstrates that by doping Ga in (CoGaxFe2-xO4)/BaTiO3, both 

magnetostriction sensitivity and electrostrain increases, indicating enhanced magnetoelectric 

performance for practical applications. 

8.4. Conclusion 

In this work, systematically studies on the ferroelectric and ferromagnetic properties of 

(CoGaxFe2-xO4)/BaTiO3 (x = 0.1, 0.2, 0.3) magnetoelectric bulk composites are presented. The 

results indicate a coupling effect of the ferroelectric and ferromagnetic phases. Although the 

magnetostriction decreased in amplitude with Ga concentration, the maximum strain derivative 

increased. The maximum strain derivative is obtained for Ga0.3CFO/BT. Moreover, the 

magnetostriction plots show clear indication of interaction between both phases. Also, Ga-

substitution into the composite both suppresses electrical conductivity and improves the 

normalized strain 𝑑33
∗ . Through model estimation, the (CoGa0.3Fe1.7O4)/BaTiO3 composite 

shows larger ME voltage coefficient than CFO/BT implying magnetoelectric coupling are 

enhanced after doping Ga. These results offer new insight into the ability of improving the 

response of magnetostrictive and controlling electrical conductivity in the CFO/BT 

multiferroic composite. 
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CHAPTER 9. ULTRAFAST OBSERVATION OF DEMAGNETIZATION IN 

MAGNETICALLY DOPED TOPOLOGICAL INSULATORS 

9.1. Introduction 

  Previous chapters introduced some basic studies and sensor applications of magnetically 

doped topological insulators, which all put TIs in static or quasi static environments. This 

chapter will focus on the dynamics of magnetization, demagnetization, and relaxation in 

magnetically doped TIs by a cutting-edge technique, ultrafast time-resolved magneto-optical 

Kerr effect (MOKE) spectroscopy.   

Spectroscopy is an important tool for studying the light and matter interaction. Electrons 

in matters are excited by the external light, which triggers the transitions between different 

energy states in matters. Information and properties of the matter can be detected by an 

emission spectrum, a plot with your interest as a function of wavelength or frequency. Ultrafast 

time-resolved MOKE spectroscopy based on the state of art ultrafast laser source, which can 

provide femtosecond (10-15 second) pulses with a peak power up to the petawatt level (1015 

W). The ultrashort and ultrahigh power laser can drive matters to an extreme non-equilibrium 

state instantaneously. Thus, this provides an opportunity to study dynamic process far beyond 

the conventional thermal-equilibrium environments. 

9.2. Ultrafast Time-Resolve Magneto-Optical Kerr Spectroscopy Setup 

Magneto-optical Kerr effect describes the change of light when reflected from a 

magnetized matter surface. In this experiment, a polarized ultrafast laser reflects from the 

sample and detected by the detector. A change in Kerr rotation, ellipticity, or polarized 

amplitude can be converted into changes in light intensity. The experiment setup is a pump-
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probe spectroscopy. The basic idea of this method is using two or more optical pulses with 

variable time delay between them to investigate the dynamic process. In this experiment, we 

use the spectroscopy built in Dr.Jigang Wang’s lab. The detailed setup process can be find in 

reference [126]. Here I briefly show the schematic picture of the setup in Figure 9.1. The laser 

source comes from the Ti; Sapphire regenerative amplifier (Model: SplitFire Pro, Spectro-

Physics). The center wavelength of the polarized laser source is 799 nm ( 1.55 eV ), the 

repetition rate is 1 kHz. Then the output laser is split into two path, pump and probe path. The 

pump beam is modulated to 500 Hz, 400nm circularly polarized laser, which goes through 

delay stage and reach a TI sample surface. The probe beam is the same p-polarized laser focus 

also on sample surface. The reflective beam of probe laser is collected and measured in the 

polarization bridge. A TI thin film sample is placed on top of a permanent magnet which field 

is perpendicular to TI surface. Both sample and magnet are hold in the Cryostat chamber and 

will cool down to Temperature ~ 4.2K.  

 

 
Figure 9.1 Ultrafast time-resolve magneto-optical Kerr spectroscopy setup with topological 

insulator samples.  
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9.3. Results and Discussions 

The sample in the experiment is CrxBi2-xTe3, x=0.29 TI thin film. According to the 

previous studies, this thin film experience ferromagnetic phase transition at Tc ~30K according 

to magneto transport study. The magnetization saturated at 𝐵⊥ ~ 0.2 T. Therefore, the magnetic 

field applied by the permanent magnet is 𝐵⊥ ~ 0.25 T to ensure all magnetization is align along 

the external field.  

 

 Figure 9.2(a) shows the schematic picture of pump laser interacting with spins in Cr 

doped Bi2Te3. Before the laser pulse reaches the sample surface, because the external magnetic 

field, all spin is aligning in the same direction. When laser pulse reaches the surface, the photon 

interacting with the electrons, the electrons interaction with spins, spins begin to precession, 

followed by the relaxation process of the spin align to the external field. Figure 9.2(b) is the 

 

Figure 9.2 Schematic picture of pump laser interacting with magnetically doped TI thin film 

sample (a); Temperature dependence of the photoinduced MOKE signal first 300 ps with fitting 

curves in red (b). 
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detailed time-dependent MOKE signal change at various temperatures. There are at least two 

dynamics regarding to the MOKE signal: fast raising process at delay time less than 5 ps and 

then slow decay with long time duration. The maximum MOKE signal related to the largest 

demagnetization in samples. One can clearly observe that the lower the temperature, the 

stronger MOKE signal one can get. To further analysis this curve, we use the following 

equation to fit the curve: 

F(t) = {A [1 − (𝑒
−𝑡
𝑡1 )] +  B [1 − (𝑒

−𝑡
𝑡2 )] + C [1 − (𝑒

−𝑡
𝑡3 )]} 𝑒

−𝑡
𝑡4  

This model consists three exponential rising terms and a single exponential decay term, where 

A, B, C is the raising constants and t1, t2, t3 and t4 are the rising and decay time constants. To 

fit the curve with the above model, we can get the temperature dependent time constants as 

shown in Figure 9.3.  The general tendency of four time constants is all decrease with 

increasing temperature. Further analysis is required to study the reason of this decreasing 

tendency.   

 

 

Figure 9.3 Temperature dependent rise and decay time constants. 
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 To summarized this on-going project, temperature dependent photoinduced 

demagnetization and relaxation dynamics are measured. Results show demagnetization 

amplitude becomes larger as decreasing temperature indicating ferromagnetism sets in at lower 

temperature. Three demagnetization and one relaxation dynamics are observed, for which the 

reason needs further investigation. 
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CHAPTER 10. CONCLUSION  

Magnetic sensors are taken up a worthy place amidst the great diversity of transducer of 

nonelectric domains into electronic data. Various types of magnetioresistors, Hall sensors, 

magnetodiodes, magnetotransducers of sophisticated design and operation have been 

developed. Over hundreds of papers, reviews, monographs and patents have been published 

on the magnetic sensor treating various aspects of the properties and operations, prototype 

device designs, fabrication, technology and application. However, the priority given to specific 

problems makes a comprehensive and balanced analysis of this field of study more difficult, 

especially in view of its rapid development over the past few years. The material used for 

magnetic sensors are also important and evolution along with the development of magnetic 

sensor.  

The present work mainly focus on two kinds of materials, multiferroic composite and 

topological insulator, targeting at two magnetic sensors: magnetoelectric multiferroic sensor 

and Hall effect sensor.   

       First part of the thesis focus on magnet sensor based on a novel kind of quantum material, 

namely, topological insulators (TIs). These materials exist both in two dimension (2d) and 

three dimension (3d). They are mostly insulating in the bulk but have high carrier mobility on 

edge of 2d materials and surface of 3d materials. The existence of the edge states or surface 

states is because of the unique bulk band structure which distinguishes TIs from normal 

insulators. Instead of just have an energy gap which prohibit electron jumping from valence 

band to conduction band, the bulk band inversion of TIs creates two surface channels to link 

valence band and conduction band which allows electrons with different spin orientations (up 

or down) can transfer in these two channels in opposite directions. The bulk band inversion is 
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a result of a strong relativistic effect of core electron spin and its orbital momentum interaction. 

The two channels of electrons propagating with different directions are linearly dispersed in 

energy vs. momentum diagram and cross at a certain point in momentum space inducing a 

special point, Dirac point, where the effective mass of electrons at that state is approaching 

zero. Dirac cone of Surface states in TIs is very much similar to the band structure of graphene 

at certain points in momentum space. The electron mobility at Dirac point of TIs is as large as 

that of graphene, which enable them the candidates for high speed transistors. All work in 

present thesis focus on 3D TI systems. Compared to graphene, because of the bulk nature of 

3D TIs, the problem due to the 2D nature of graphene can be neglect such how to acquire single 

layer and edge effect.  

However, as a coin has two sides, the bulk bandgap of mostly all 3D TIs is too small 

to any room temperature application. What’s more, most 3D TI systems, including Bi2Se3, 

Bi2Te3, BixSb1-x, Sb2Te3, has almost non ideal band structure which requires totally insulating 

in the bulk and Dirac point centered in the bulk bandgap. However, due to the naturally small 

band gap and defects brought into system during crystal growth, none of the existing systems 

fulfill all the requirements. Therefore, first part of my thesis related to TI is to grow high quality 

TI systems. Molecular Beam Epitaxy (MBE) method was used to grow TI thin film on different 

substrates. Results shows that TIs grown on mica substrate provide the lowest surface 

roughness, largest terrace width and lowest sheet resistance compared to those grown on Si 

substrates and GaAs substrates. What’s more, mica is transparent and flexible substrate which 

enable the possible application of TI thin films on optoelectronics.  

 One central issue that has plagued the experimental progress with TI is the presence 

of bulk doping or conductance in most naturally grown crystal. Therefore, second part of TI 
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work is to make the ideal 3D TIs with reducing bulk conductivity. Elemental doping and 

composition tuning ternary compounds are used on two typical TI systems Bi2Te3 and Sb2Te3 

to make (Sb1-xBix)2Te3 compound to tune both the Dirac cone and Fermi level into the bulk 

band gap. After doping Bi into Sb2Te3 to certain concentration, I observed a maximum in sheet 

resistance demonstrate presentence of Dirac point between bulk valence band and conduction 

band. However, the conductance and resistance measurement alone cannot differentiate 

electronic state on surface of TIs from other material such as graphene since it has similar 

behavior, so the conducting measurement is not striking. A more precise method to measure 

TI surface state is Hall measurement.  Results show the quantum oscillation of Hall resistance 

and fitting curve provides a low value of 2D carrier density, cyclotron mass, and Fermi vector. 

Together with the previous resistance measurements, we can make a conclusion that this work 

provides a near ideal TI base system (Sb0.957Bi0.043)2Te3 for further scientific research and 

device application. However, the most direct and convincible method to detect the surface state 

is to “see” trough Angle Resolved Photo Emission Spectroscopy (ARPES), which is ideal tool 

to measure energy dispersion of surface states of a solid E(𝑘x
⃑⃑⃑⃑ , 𝑘y

⃑⃑⃑⃑ ) as function of momentum 

ℏ𝑘x
⃑⃑⃑⃑ , ℏ𝑘x

⃑⃑⃑⃑ . Due to the instrument limitation, I did not get access to ARPES but there are several 

other research groups show ARPES results of similar system.  

 Another important feature that TIs have is that their robust surface state is protected by 

time-reversal symmetry (TRS) which suppresses the electron backscattering with impurities 

other than what can break TRS such as magnetic field and magnetization. When applying a 

magnetic field normal to the surface or by inducing a net out-of-surface magnetization in the 

material, TRS is broken on the surface state, creating an energy splitting between the electron 

with spin-up and spin-down surface bands.  This opening of surface band gap is phenomenal 
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not only because it is the first experimental system example to observe Quantum Anomalous 

Hall effect but also shine the light on possible application of these material to magnetic sensor 

field. Therefore, the last part of thesis on TI project are mainly based on the exploration of 

magnetically doped TI systems and their application as magnetic sensors. Cr doped Bi2Te3 TI 

thin film are presented to study the transport properties with various magnetic element doping 

concentrations. As increasing magnetic doping in Bi2Te3, a ferromagnetic phase transition is 

developing over certain Cr concentration corresponding to observation of anomalous Hall 

effect afterwards on Hall resistance. Arrot plot shows the ferromagnetism in TIs may result 

from RKKY interaction of magnetic impurities consisting of Heisenberg-like, Ising-like, and 

Dzyaloshinskii-Moriya-like terms. Hall effect sensors and anomalous Hall effect sensors are 

developed based on Mn doped and Cr doped Bi2Te3 systems. Ultrahigh Hall sensitivity of the 

sensor are found due to the ferromagnetism induced anomalous Hall effect. The significance 

of the present work is the development of a prototype Hall sensor using this novel kind of 

newly discovered materials. It is the first attempt of making a micro magnetic sensor out of 

TIs focusing on its magnetic properties. There are other groups also working on devices such 

as transistor based on TIs emphasizing on their extraordinary carrier mobility.  

Topological insulators is an exciting topics both in theory and practice. There are lots of 

theoretical developments describing the possible types of TIs, classifying them, the possible 

kinds of physical consequences that they may have such as quantum anomalous Hall effect. It 

combines mathematics, physics and chemistry in a very intimate way, it's been an exciting 

topic last five to ten years that this field has seen an enormous development. Experimentally, 

there are several approaches for the future study. First is the attempt to find new and better 

materials of various kinds TIs.  And the second direction is for existing materials to actually 
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measure surface transport properties, optical properties and magnetic properties to demonstrate 

that the topological materials are actually behaving in the way that they are supposed to be 

behaving, or perhaps in surprising ways that we didn't anticipate. And then a ultimate goal is 

applications. In this work, we made Hall sensor out of TIs. There are certainly potential 

applications in other perspectives, researches are using the edge channels as wires in micro-

electronic devices or for sending signals; some applications that have to do with the magneto-

electric coupling; TIs are also proposed to use in quantum computing by designing qubits. 

In order to realize the proposed TI based device, another interesting material which is 

multiferroic has been investigated in the second part of thesis. This is because we need to use 

electric field to control the direction of magnetizations so that through the proximity effect, the 

spin of magnetically doped TI can be aligned out-of- surface. Magnetoelectric multiferroic 

materials is a kind of novel material become striking due to its multifunctionality, displaying 

magnetization and dielectric polarization in the same material, for a  variety of device 

application. The single phase multiferroic materials such as BiFeO3, in which ferromagnetic 

and ferroelectric order spontaneous appear and couple, are rare in nature. Besides, the coupling 

of the two orders in bulk single phase material is too weak to utilize in device and sensors. 

Intensive researches are being pursued towards strengthen of magneto-electric coupling and 

design of new materials with stronger coupling. Another approach is to use indirect coupling 

of ferromagnetic and ferroelectric properties of different materials in order to get strong 

magnetoelectric (ME) coefficient, for example couple the two orders through induced strain in 

crystal lattices. This can be achieved because of the general exists of magnetostriction of 

ferromagnetic materials and piezoelectricity of ferroelectric materials. By combining high 

magnetostrictive material with high piezoelectric material into different structural composites, 
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the ME coefficient is expected to be higher than that of the single phase materials. By making 

the multi-phase multiferroic materials, the property of controlling magnetic properties by 

applying electric field and vice versa is expected not only be accomplished in lab researches 

but also been implemented in industry. Therefore, in my work, I choose the most common and 

cheap non rare earth ferromagnetic with highest magnetostriction ceramic, cobalt ferrite 

(CoFe2O4) as the ferromagnetic element in ME composite; Following the same idea, I choose 

barium titanate (BaTiO3) which is the most common room temperature piezoelectric material 

with relative high piezoelectric coefficient as ferroelectric element in composite. The most 

widely used ceramic fabrication process, solid state reaction method, is used to combine the 

two into composites. I find the ME coefficient value varies with tuning the concentration of 

elements in the composites. By doping Ga into cobalt ferrite, the magnetostriction derivative 

(dλ/dH) increases in compounds. Then synthesis composite Ga doped CoFe2O4 power with 

BaTiO3 power into composites, the overall ME coefficient are expected to increase after 

calculation. This results provide the new approach to enhance the ME coefficient by increasing 

the sensitivity of each element, magnetostriction derivative (dλ/dH) and piezoelectricity 

(dE/dλ) in composite. Besides that, the doping element, Ga, improves the solution of long-

standing current leaking problem in ME materials. What’s more, the experiment I designed 

using the most common materials and most easy method to fabricate the sample, which offer 

the opportunity to apply in a large scale industry manufacture.  

Recent experimental results show a huge increase of ME coefficient in low dimensional 

ME materials such as thin films. This is a further step toward the implementation of micro 

device application, especially, as the sensors and transducer requires much smaller size, higher 

capability, more efficient and lower energy consumption. For the future work, I would like to 
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apply the current bulk material Ga doped CoFe2O4/BaTiO3 composite to thin film samples. 

Paused Laser deposition (PLD) is an effective and efficient method to fabricate thin film 

oxidize samples. Thickness influence on ME coefficient can also be investigated. The ultimate 

goal is to make micro or nano electronic devices out of the current system. For example, to 

design a new kind of read-write head sensor for magnetic recording technique. Dr. Nan’s group 

have demonstrated a prototype ME read heading using CoFe2O4/BaTiO3 bilayer ME 

heterostructures. Their experimental results show the output voltage waveform of the ME 

reader can follow magnetic excitation waveform. This new kind of read head become 

promising because of its less power consumption, smaller size and simpler structure than the 

conventional magnetoresistance sensor. However, sensitivity of the current ME reading head 

is not as high as the Giant Magnetoresistance (GMR) sensor. What is more, the recording 

densities which relies on the ME heterostructure, is not large enough to apply in future high 

density magnetic recording techniques. Therefore, further research need to be done in 

improving the performance of current sensor including using much higher ME coefficient 

materials. To understand ME coupling in the heterostructure also plays an important role to 

design better ME sensors. However, the cost of the thin film material might be much higher 

than the conventional material regarding to the device application in industry.  
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